Solved

Using Maclaurin Series, the General Series Solution, with the First y2xy+y=0y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0

Question 94

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y2xy+y=0y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 is


A) y=A(1x22x487x6240+) +B(xx36x524x7112) y = A \left( 1 - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 8 } - \frac { 7 x ^ { 6 } } { 240 } + \cdots \right) + B \left( x - \frac { x ^ { 3 } } { 6 } - \frac { x ^ { 5 } } { 24 } - \frac { x ^ { 7 } } { 112 } - \cdots \right)
B) y=A(1x22x487x6240+) +B(xx36+x524x7112+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 8 } - \frac { 7 x ^ { 6 } } { 240 } + \cdots \right) + B \left( x - \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 24 } - \frac { x ^ { 7 } } { 112 } + \cdots \right)
C) y=A(1x22x487x6240) +B(x+x36+x524+x7112+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 8 } - \frac { 7 x ^ { 6 } } { 240 } - \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 24 } + \frac { x ^ { 7 } } { 112 } + \cdots \right)
D) y=A(1x22+x487x6240+) +B(x+x36+x524+x7112+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 4 } } { 8 } - \frac { 7 x ^ { 6 } } { 240 } + \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 24 } + \frac { x ^ { 7 } } { 112 } + \cdots \right)
E) y=A(1+x22+x48+7x6240+) +B(x+x36+x524+x7112+) y = A \left( 1 + \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 4 } } { 8 } + \frac { 7 x ^ { 6 } } { 240 } + \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 24 } + \frac { x ^ { 7 } } { 112 } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions