Solved

Consider the Second-Order Differential Equation y1(x)=n=0anxn,y2(x)=x14n=0bnxn y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x)=x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}

Question 78

Multiple Choice

Consider the second-order differential equation  Consider the second-order differential equation   . Suppose the method of Frobenius is used to determine the general solution of this differential equation. Which of the following is the form of a pair of linearly independent solution of this differential A)    y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}   B)    y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}   C)    y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =x^{\frac{3}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}   D)    y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{\frac{3}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}   E)    y_{1}(x) =\ln (x)  \sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n} .
Suppose the method of Frobenius is used to determine the general solution of this differential equation.
Which of the following is the form of a pair of linearly independent solution of this differential


A) y1(x) =n=0anxn,y2(x) =x14n=0bnxn y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}
B) y1(x) =n=0anxn+1,y2(x) =x14n=0bnxn y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}
C) y1(x) =n=0anxn,y2(x) =x34n=0bnxn y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =x^{\frac{3}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}
D) y1(x) =n=0anxn+1,y2(x) =x34n=0bnxn y_{1}(x) =\sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{\frac{3}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}
E) y1(x) =ln(x) n=0anxn+1,y2(x) =x14n=0bnxn y_{1}(x) =\ln (x) \sum_{n=0}^{\infty} a_{n} x^{n+1}, y_{2}(x) =x^{-\frac{1}{4}} \sum_{n=0}^{\infty} b_{n} x^{n}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions