Solved

The Solution Of y+3y4y=cosxy ^ { \prime \prime } + 3 y ^ { \prime } - 4 y = \cos x

Question 47

Multiple Choice

The solution of y+3y4y=cosxy ^ { \prime \prime } + 3 y ^ { \prime } - 4 y = \cos x is


A) y=c1ex+c2e4x+(5sinx+3cosx) /34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \sin x + 3 \cos x ) / 34
B) y=c1ex+c2e4x+(5sinx+3cosx) /34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \sin x + 3 \cos x ) / 34
C) y=c1ex+c2e4x+(5cosx3sinx) /34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x - 3 \sin x ) / 34
D) y=c1ex+c2e4x+(5cosx+3sinx) /34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \cos x + 3 \sin x ) / 34
E) y=c1ex+c2e4x+(5cosx+3sinx) /34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x + 3 \sin x ) / 34

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions