Solved

Using Laplace Transform Methods, the Solution Of y+y=δ(tπ/2),y(0)=1y ^ { \prime \prime } + y = \delta ( t - \pi / 2 ) , y ( 0 ) = 1

Question 46

Multiple Choice

Using Laplace transform methods, the solution of y+y=δ(tπ/2) ,y(0) =1y ^ { \prime \prime } + y = \delta ( t - \pi / 2 ) , y ( 0 ) = 1 , y(0) =0y ^ { \prime } ( 0 ) = 0 is


A) y=sint+sin(tπ/2) u(tπ/2) y = \sin t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
B) y=sintcos(tπ/2) u(tπ/2) y = \sin t - \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
C) y=cost+sin(tπ/2) u(tπ/2) y = \cos t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
D) y=cost+cos(tπ/2) u(tπ/2) y = \cos t + \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
E) y=costsin(tπ/2) u(tπ/2) y = \cos t - \sin ( t - \pi / 2 ) u ( t - \pi / 2 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions