Solved

In the Previous Problem, Assume That f(x)=sin(πx)f ( x ) = \sin ( \pi x )

Question 1

Multiple Choice

In the previous problem, assume that f(x) =sin(πx) f ( x ) = \sin ( \pi x ) . The solution for U(x,s) U ( x , s ) is


A) U=sinh(sx) +ss2+π2sin(πx) U = \sinh ( s x ) + \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
B) U=cosh(sx) +ss2π2sin(πx) U = \cosh ( s x ) + \frac { s } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
C) U=1s2π2sin(πx) U = \frac { 1 } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
D) U=ss2+π2sin(πx) U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
E) U=1s2+π2sin(πx) U = \frac { 1 } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )

Correct Answer:

verifed

Verified

Related Questions