Solved

Suppose F{f(x)}=F(α),F{g(x)}=G(α)\mathcal { F } \{ f ( x ) \} = F ( \alpha ) , \mathcal { F } \{ g ( x ) \} = G ( \alpha )

Question 9

Multiple Choice

Suppose F{f(x) }=F(α) ,F{g(x) }=G(α) \mathcal { F } \{ f ( x ) \} = F ( \alpha ) , \mathcal { F } \{ g ( x ) \} = G ( \alpha ) . In the convolution theorem, the formula for the Fourier transform is Select all that apply.


A) f(τ) g(tτ) dτ=F1{F(α) G(α) }\int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
B) f(tτ) g(τ) dτ=F1{F(α) G(α) }\int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
C) F{f(τ) g(tτ) dτ}=F(α) G(α) \mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
D) F{f(tτ) g(τ) dτ}=F(α) G(α) \mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions