Solved

In the Previous Problem, Assume That f(x)=sin(πt)f ( x ) = \sin ( \pi t )

Question 10

Multiple Choice

In the previous problem, assume that f(x) =sin(πt) f ( x ) = \sin ( \pi t ) . The solution for U(x,s) U ( x , s ) is


A) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { s x / \alpha }
B) U=ss2π2esx/αU = \frac { s } { s ^ { 2 } - \pi ^ { 2 } } e ^ { - s x / \alpha }
C) U=πs2π2esx/αU = \frac { \pi } { s ^ { 2 } - \pi ^ { 2 } } e ^ { s x / \alpha }
D) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { - s x / \alpha }
E) U=ss2+π2sinh(sx/α) U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sinh ( - s x / \alpha )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions