Solved

Consider the Temperature u(x,t)u ( x , t ) , in an Infinite Rod

Question 40

Multiple Choice

Consider the temperature, u(x,t) u ( x , t ) , in an infinite rod (<x<) ( - \infty < x < \infty ) , with an initial temperature of f(x) =exf ( x ) = e ^ { - | x | } . The mathematical model for this is


A) k2ux2=ut,u(x,0) =exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
B) kux=ut,u(x,0) =exk \frac { \partial u } { \partial x } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
C) k2ux2=2ut2,u(x,0) =exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = e ^ { - | x | }
D) k2ux2+2ut2=0,u(x,0) =exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = e ^ { - | x | }
E) k2ux2+ut=0,u(x,0) =exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = e ^ { - | x | }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions