Solved

Apply a Fourier Transform In xx In the Previous Problem U(α,t)=F{u(x,t)}U ( \alpha , t ) = \mathcal { F } \{ u ( x , t ) \}

Question 14

Multiple Choice

Apply a Fourier transform in xx in the previous problem. The resulting equation for U(α,t) =F{u(x,t) }U ( \alpha , t ) = \mathcal { F } \{ u ( x , t ) \} is


A) kα2U=Ut,U(α,0) =2/(1+α2) k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
B) kαU=Ut,U(α,0) =1/(1+α2) k \alpha U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
C) kα2U=Ut,U(α,0) =1/(1+α2) k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
D) kα2U=Ut,U(α,0) =2/(1+α2) - k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
E) kαU=Ut,U(α,0) =2/(1+α2) - k \alpha U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions