Solved

Consider a Semi-Infinite, Elastic, Vibrating String, with Zero Initial Position x=0x = 0

Question 12

Multiple Choice

Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at x=0x = 0 , so that u(0,t) =f(t) u ( 0 , t ) = f ( t ) . Assume that limxu(x,t) =0\lim _ { x \rightarrow \infty } u ( x , t ) = 0 . The mathematical model for the deflection, u(x,t) u ( x , t ) , is


A) α22ux2=2ut2,u(0,t) =f(t) ,u(x,0) =0,ut(x,0) =0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
B) α22ux2+2ut2=0,u(0,t) =f(t) ,u(x,0) =f(t) ,ut(x,0) =0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0
C) α22ux2=ut,u(0,t) =f(t) ,u(x,0) =0,ut(x,0) =0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
D) α22ux2+ut=0,u(0,t) =f(t) ,u(x,0) =0,ut(x,0) =0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
E) α22ux2=2ut2,u(0,t) =f(t) ,u(x,0) =f(t) ,ut(x,0) =0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions