Solved

In the Previous Problem, the Solution of the Eigenvalue Problem λ=n(n+1),R=rn,n=1,2,3,\lambda = n ( n + 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots

Question 39

Multiple Choice

In the previous problem, the solution of the eigenvalue problem is


A) λ=n(n+1) ,R=rn,n=1,2,3,\lambda = n ( n + 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
B) λ=n(n1) ,R=rn,n=1,2,3,\lambda = n ( n - 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
C) λ=n(n1) ,Θ=Pn(cosθ) ,n=1,2,3,\lambda = n ( n - 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
D) λ=n(n+1) ,Θ=Pn(cosθ) ,n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
E) λ=n(n+1) ,Θ=Pn(sinθ) ,n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions