Solved

Consider the Vibrations of a Circular Membrane of Radius 2 1sin(πr/2)1 - \sin ( \pi r / 2 )

Question 40

Multiple Choice

Consider the vibrations of a circular membrane of radius 2 clamped along the circumference, with an initial displacement of 1sin(πr/2) 1 - \sin ( \pi r / 2 ) and an initial velocity of zero. The mathematical model for this situation is


A) 2ur2+1rur=2ut2=0,u(2,t) =0,u(r,0) =1sin(πr/2) ,u,(r,0) =0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
B) 2ur21rur=2ut2=0,u(2,t) =0,u(r,0) =1sin(πr/2) ,u,(r,0) =0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
C) 2ur2+1rur=2ut2=0,u(2,t) =0,u(r,0) =1sin(π/2) ,ut(r,0) =0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi / 2 ) , u _ { t } ( r , 0 ) = 0
D) 2ur21r2ur=2ut2=0,u(2,t) =0,u(r,0) =1sin(πr/2) ,ut(r,0) =0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u _ { t } ( r , 0 ) = 0
E) 2ur2+1r2ur=2ut2=0,u(2,t) =0,u(r,0) =1sin(πr/2) ,u,(r,0) =0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions