Solved

The Model Describing the Temperature in a Rod Where the Temperature

Question 34

Multiple Choice

The model describing the temperature in a rod where the temperature at the left end is zero and where there is heat transfer from the right boundary into the external medium is


A) k2ux2=2ut2,u(0,t) =0,ux=(L,t) =hu(L,t) ,h>0,u(x,0) =f(x) k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
B) k2ux2=2ut2,u(0,t) =0,ux=(L,t) =hu(L,t) ,h>0,u(x,0) =f(x) k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
C) k2ux2=ut,u(0,t) =0,ux=(L,t) =hu(L,t) ,h>0,u(x,0) =f(x) k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
D) k2ux2=ut,u(0,t) =0,ux=(L,t) =hu(L,t) ,h>0,u(x,0) =f(x) k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )
E) k2ux2+2ut2=0,u(0,t) =0,ux=(L,t) =hu(L,t) ,h>0,u(x,0) =f(x) k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = 0 , \frac { \partial u } { \partial x } = ( L , t ) = - h u ( L , t ) , h > 0 , u ( x , 0 ) = f ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions