Solved

Consider the Equation ux+uyy=0u _ { x } + u _ { y y } = 0

Question 39

Multiple Choice

Consider the equation ux+uyy=0u _ { x } + u _ { y y } = 0 with conditions u(0,y) =0,u=(L,y) =0,u(x,0) =f(x) ,u(x,H) =0u ( 0 , y ) = 0 , u = ( L , y ) = 0 , u ( x , 0 ) = f ( x ) , u ( x , H ) = 0 . When separating variables with u(x,y) =X(x) Y(y) u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for X,YX , Y are


A) X+λX=0,X(0) =0,X(L) =0,Y+λY=0,Y(H) =0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( H ) = 0
B) X+λX=0,X(0) =0,X(L) =0,YλY=0,Y(H) =0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = 0
C) X+λX=0,X(0) =0,X(L) =0,YλY=0,Y(0) =0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
D) XλX=0,X(0) =0,X(L) =0,YλY=0,Y(H) =f(0) X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( H ) = f ( 0 )
E) X+λX=0,X(0) =0,X(L) =0,Y+λY=0,Y(0) =f(x) X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = f ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions