Solved

The General Solution Of y+n2y=0,y(0)=0,y(π)=0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots

Question 37

Multiple Choice

The general solution of y+n2y=0,y(0) =0,y(π) =0,n=1,2,3y ^ { \prime \prime } + n ^ { 2 } y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 , n = 1,2,3 \ldots is


A) y=0y = 0
B) y=csin(nx) y = c \cdot \sin ( n x )
C) y=ccos(nx) y = c \cdot \cos ( n x )
D) y=c(enxenx) y = c \left( e ^ { n x } - e ^ { - n x } \right)
E) y=c(enx+enx) y = c \left( e ^ { n x } + e ^ { - n x } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions