Exam 8: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the inverse of the matrix. [152015001]\left[ \begin{array} { l l l } 1 & 5 & 2 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(31)

Write the system of linear equations as a matrix equation, AX = B. {x13x2+2x3=18x1+3x2x3=183x13x2+3x3=18\left\{ \begin{aligned}x _ { 1 } - 3 x _ { 2 } + 2 x _ { 3 } & = 18 \\- x _ { 1 } + 3 x _ { 2 } - x _ { 3 } & = 18 \\3 x _ { 1 } - 3 x _ { 2 } + 3 x _ { 3 } & = 18\end{aligned} \right.

(Multiple Choice)
4.8/5
(32)

Use the matrix capabilities of a graphing utility to find the determinant of the matrix [16248040160016]\left[ \begin{array} { c c c } 16 & 24 & 8 \\0 & 40 & - 16 \\0 & 0 & - 16\end{array} \right] .

(Multiple Choice)
4.8/5
(41)

Find the determinant of the matrix. [22816]\left[ \begin{array} { c c } 2 & - 2 \\8 & - 16\end{array} \right]

(Multiple Choice)
4.9/5
(38)

Use Cramer's rule to find the solution of the system, if possible. {5xy=12x+y=0\left\{ \begin{aligned}5 x - y & = 12 \\x + y & = 0\end{aligned} \right.

(Multiple Choice)
4.9/5
(39)

A hair product company sells three types of hair products for $30, $20 and $10 per unit.In one year, the total revenue for the three products was $820,000 which corresponded to the sale of 42,000 units.The company sold half as many units of the $30 products as units of the $20 product.Use Cramer's Rule to solve a system of linear equations to find how many units of each product were sold. ​

(Multiple Choice)
4.7/5
(32)

Write the matrix in reduced row-echelon form. [5736662442424]\left[ \begin{array} { r r r r } 5 & - 7 & - 3 & 6 \\- 6 & - 6 & 2 & - 44 \\2 & - 4 & - 2 & - 4\end{array} \right]

(Multiple Choice)
4.7/5
(34)

Determine whether the matrix is in row-echelon form.If it is, determine if it is also in reduced row-echelon form. [199601020011]\left[ \begin{array} { r r r r } 1 & 9 & - 9 & - 6 \\0 & 1 & 0 & - 2 \\0 & 0 & 1 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(37)

Evaluate the determinant \mid 7 4 in which the entries are functions.

(Multiple Choice)
4.9/5
(37)

Evaluate the determinant. 9828\left| \begin{array} { c c } 9 & 8 \\- 2 & 8\end{array} \right|

(Short Answer)
4.9/5
(29)

Identify the elementary row operation being performed to obtain the new row-equivalent matrix. Original Matrix New Row-Equivalent Matrix [185899]\left[ \begin{array} { r r r } - 1 & - 8 & 5 \\- 8 & 9 & 9\end{array} \right] [171023899]\left[ \begin{array} { r r r } - 17 & 10 & 23 \\- 8 & 9 & 9\end{array} \right]

(Multiple Choice)
4.9/5
(35)

Determine the order of the matrix. [854781]\left[ \begin{array} { l l l } 8 & 5 & 4 \\7 & 8 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Solve the system of linear equations. {x+y+z=73x+5y+4z=83x+6y+5z=0\left\{ \begin{array} { c } x + y + z = - 7 \\3 x + 5 y + 4 z = 8 \\3 x + 6 y + 5 z = 0\end{array} \right.

(Multiple Choice)
4.9/5
(37)

Of the products AB, BA, A2 and B2, which ones are possible for the given matrices? A=[317],B=[716]A = \left[ \begin{array} { c } - 3 \\1 \\- 7\end{array} \right] , B = \left[ \begin{array} { l l l } 7 & 1 & 6\end{array} \right]

(Multiple Choice)
4.8/5
(38)

Evaluate the determinant. 5542414112141251\left| \begin{array} { c c c c } 5 & 5 & - 4 & 2 \\4 & 1 & - 4 & 1 \\- 1 & 2 & 1 & - 4 \\1 & 2 & - 5 & - 1\end{array} \right|

(Short Answer)
4.8/5
(36)

Find A + B. A=[1221],B=[4454]A = \left[ \begin{array} { l l } 1 & 2 \\2 & 1\end{array} \right] , B = \left[ \begin{array} { c c } - 4 & - 4 \\5 & 4\end{array} \right]

(Multiple Choice)
4.7/5
(33)

Of the products AB, BA, A2 and B2, which ones are possible for the given matrices? A=[1165],B=[5673]A = \left[ \begin{array} { l l } 1 & 1 \\6 & 5\end{array} \right] , B = \left[ \begin{array} { c c } 5 & - 6 \\- 7 & 3\end{array} \right]

(Multiple Choice)
4.8/5
(40)

Find the determinant of the matrix. [4058]\left[ \begin{array} { c c } - 4 & 0 \\5 & 8\end{array} \right]

(Multiple Choice)
4.9/5
(27)

Evaluate the expression. [3415][5241][1224]\left[ \begin{array} { c c } 3 & - 4 \\- 1 & 5\end{array} \right] \left[ \begin{array} { l l } - 5 & 2 \\- 4 & 1\end{array} \right] \left[ \begin{array} { c c } - 1 & - 2 \\2 & 4\end{array} \right]

(Multiple Choice)
4.7/5
(29)

Use Cramer's Rule to solve (if possible) the system of equations. {4x2y+z=32x+2y+3z=95x2y+6z=15\left\{ \begin{array} { l } 4 x - 2 y + z = - 3 \\2 x + 2 y + 3 z = 9 \\5 x - 2 y + 6 z = - 15\end{array} \right.

(Multiple Choice)
4.8/5
(30)
Showing 21 - 40 of 283
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)