Exam 8: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the inverse of A. A=[2341]A = \left[ \begin{array} { c c } 2 & 3 \\- 4 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(43)

Fill in the blank using elementary row operations to form a row-equivalent matrix. [2121019]\left[ \begin{array} { r r r } 2 & 1 & - 2 \\- 10 & - 1 & 9\end{array} \right] [21201]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & \square & - 1\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Find A + B. ​ A=[554992],B=[378764]A = \left[ \begin{array} { l l l } 5 & 5 & 4 \\9 & 9 & 2\end{array} \right] , B = \left[ \begin{array} { l l l } 3 & 7 & 8 \\7 & 6 & 4\end{array} \right]

(Essay)
4.7/5
(28)

Use an inverse matrix to solve (if possible) the system of linear equations. {3x+4y=25x+3y=4\left\{ \begin{array} { l } 3 x + 4 y = - 2 \\5 x + 3 y = 4\end{array} \right.

(Multiple Choice)
4.9/5
(28)

An augmented matrix that represents a system of linear equations (in variables x, y, z and w if applicable) has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix. [100801060010]\left[ \begin{array} { c c c c } 1&0&0 &\vdots& 8 \\0&1&0 &\vdots& -6 \\0 & 0 & 1 &\vdots&0\\\end{array} \right]

(Multiple Choice)
4.9/5
(34)

Write the matrix in reduced row-echelon form. [96333811477768]\left[ \begin{array} { r r r r } 9 & - 6 & - 3 & - 33 \\8 & - 1 & 1 & - 47 \\- 7 & - 7 & 6 & - 8\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Use a determinant to find y such that (6,15),(12,y)( 6 , - 15 ) , ( 12 , y ) , and (15,6)( 15 , - 6 ) are collinear.

(Multiple Choice)
4.9/5
(43)

Find the product. [9378][8784]\left[ \begin{array} { l l } 9 & 3 \\7 & 8\end{array} \right] \left[ \begin{array} { l l } 8 & 7 \\8 & 4\end{array} \right]

(Multiple Choice)
4.7/5
(40)

Find the determinant of the matrix by the method of expansion by cofactors.Expand using the column 2. [321456231]\left[ \begin{array} { c c c } - 3 & 2 & 1 \\4 & 5 & 6 \\2 & - 3 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Use Cramer's Rule to solve (if possible) the system of equations. {5x4y+z=12x+2y2z=123x+y+z=2\left\{ \begin{array} { r } 5 x - 4 y + z = - 12 \\- x + 2 y - 2 z = 12 \\3 x + y + z = - 2\end{array} \right.

(Multiple Choice)
4.8/5
(31)

Use a determinant to determine whether the points (-3, -9), (-5, -11) and (0, -7) are collinear.

(Multiple Choice)
5.0/5
(33)

Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x, y, z and if applicable.) [116801160016]\left[ \begin{array} { c c c c } 1&-1&6 &\vdots& 8 \\0&1&-1 &\vdots& 6 \\0 & 0 & 1 &\vdots&-6\\\end{array} \right]

(Multiple Choice)
4.8/5
(40)

Find all the cofactors of the matrix. [0636]\left[ \begin{array} { c c } 0 & 6 \\3 & - 6\end{array} \right]

(Multiple Choice)
4.8/5
(26)

Use determinants to find the area of a triangle with the given vertices and confirm your answer by plotting the points in a coordinate plane and using the formula  Area =12 (base)(height )\text { Area } \left. = \frac { 1 } { 2 } \text { (base)(height } \right) . (5, -3), (2, -2), (7, 5)

(Multiple Choice)
4.9/5
(38)

Solve for x given the following equation involving a determinant. x681x4=0\left| \begin{array} { c c } x - 6 & - 8 \\- 1 & x - 4\end{array} \right| = 0

(Multiple Choice)
4.7/5
(41)

Fill in the blank using elementary row operations to form a row-equivalent matrix. [153214]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\- 2 & 1 & 4\end{array} \right] [153010]\left[\begin{array}{rrr}-1 & 5 & -3 \\0 &\square & 10\end{array}\right]

(Multiple Choice)
4.9/5
(34)

Find the determinant of the matrix by the method of expansion by cofactors.Expand using the row 1. [321456231]\left[ \begin{array} { c c c } - 3 & 2 & 1 \\4 & 5 & 6 \\2 & - 3 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Use Cramer's Rule to solve (if possible) the system of equations. {x+2y+3z=52x+yz=103x3y+2z=21\left\{ \begin{array} { l } x + 2 y + 3 z = - 5 \\- 2 x + y - z = 10 \\3 x - 3 y + 2 z = - 21\end{array} \right.

(Multiple Choice)
5.0/5
(34)

Find 3A - 2B. A=[350342564086210],B=[2544251082544024]A = \left[ \begin{array} { c c c } - 3 & 5 & 0 \\3 & - 4 & 2 \\5 & 6 & - 4 \\0 & 8 & - 6 \\- 2 & - 1 & 0\end{array} \right] , B = \left[ \begin{array} { c c c } - 2 & 5 & 4 \\4 & - 2 & - 5 \\10 & - 8 & - 2 \\5 & 4 & - 4 \\0 & 2 & - 4\end{array} \right]

(Multiple Choice)
4.8/5
(27)

An augmented matrix that represents a system of linear equations (in variables x, y, z and w if applicable) has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix. [105016]\left[ \begin{array} { c c c c } 1&0 &\vdots& 5 \\0&1&\vdots& -6 \\\end{array} \right]

(Multiple Choice)
4.8/5
(23)
Showing 141 - 160 of 283
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)