Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the graph to determine limx08x28xx\lim _ { x \rightarrow 0 } \frac { 8 x ^ { 2 } - 8 x } { x } (if it exists).  Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { 8 x ^ { 2 } - 8 x } { x }  (if it exists).

Free
(Multiple Choice)
4.7/5
(37)
Correct Answer:
Verified

C

Select the correct graph of the following function. f(x)=8(5x25x2+x)f ( x ) = 8 \left( 5 x - \sqrt { 25 x ^ { 2 } + x } \right)

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

C

Use the graph to determine the limit visually (if it exists).Then identify another function g2(x)that agrees with the given function at all but one point. g(x)=3x2+xxg ( x ) = \frac { - 3 x ^ { 2 } + x } { x }  Use the graph to determine the limit visually (if it exists).Then identify another function g<sub>2</sub>(x)that agrees with the given function at all but one point.    g ( x ) = \frac { - 3 x ^ { 2 } + x } { x }         \lim _ { x \rightarrow - 2 } g ( x ) =     limx2g(x)=\lim _ { x \rightarrow - 2 } g ( x ) =

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

D

Find the derivative of the function. f(x)=x+3f ( x ) = \sqrt { x + 3 }

(Multiple Choice)
4.9/5
(38)

Find the limit (if it exists).Use a graphing utility to verify your result graphically. lima5a3+125a+5\lim _ { a \rightarrow - 5 } \frac { a ^ { 3 } + 125 } { a + 5 }

(Multiple Choice)
4.9/5
(34)

Find limx2(12x55x)\lim _ { x \rightarrow - 2 } \left( \frac { 1 } { 2 } x ^ { 5 } - 5 x \right) by direct substitution.

(Multiple Choice)
4.8/5
(45)

Find the limit limx0tan5xx\lim _ { x \rightarrow 0 } \frac { \tan 5 x } { x }

(Multiple Choice)
4.9/5
(35)

Find the limit by direct substitution. limx515xx+4\lim _ { x \rightarrow 5 } \frac { 15 x } { \sqrt { x + 4 } }

(Multiple Choice)
4.8/5
(36)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=1x+6,(2,14)f ( x ) = \frac { 1 } { x + 6 } , \quad \left( - 2 , \frac { 1 } { 4 } \right)

(Multiple Choice)
4.8/5
(47)

Find limx6x2x2+15x+54\lim _ { x \rightarrow 6 } \frac { x - 2 } { x ^ { 2 } + 15 x + 54 } by direct substitution.

(Multiple Choice)
4.8/5
(33)

Use the first six terms to predict the limit of the sequence αn=6n3+5n+3\alpha _ { n } = \frac { 6 n ^ { 3 } + 5 } { n + 3 } (assume n begins with 1).

(Multiple Choice)
4.8/5
(28)

Find limx4[f(x)g(x)]\lim _ { x \rightarrow 4 } [ f ( x ) g ( x ) ] . f(x)=x8x,g(x)=sinπxf ( x ) = \frac { x } { 8 - x } , g ( x ) = \sin \pi x

(Multiple Choice)
4.7/5
(35)

Evaluate the sum using the summation formula and property. j=120(j2+j)\sum _ { j = 1 } ^ { 20 } \left( j ^ { 2 } + j \right)

(Multiple Choice)
5.0/5
(33)

Evaluate the sum using the summation formula and property. i=1607\sum _ { i = 1 } ^ { 60 } 7

(Multiple Choice)
4.9/5
(31)

Use the limit process to find the slope of the graph of the function at the specified point.Use a graphing utility to confirm your result. g(x)=25xg ( x ) = \frac { 25 } { x }

(Multiple Choice)
4.9/5
(33)

Select the correct graph for the following function and find the limit (if it exists)as x approaches 2. f(x)={4x,x2x28x+1,x>2f ( x ) = \left\{ \begin{array} { l } - 4 x , x \leq 2 \\x ^ { 2 } - 8 x + 1 , x > 2\end{array} \right.

(Multiple Choice)
4.9/5
(34)

Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not. f(x)=102+e1/x,limx0f(x)f ( x ) = \frac { 10 } { 2 + e ^ { 1 / x } } , \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.9/5
(37)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=6x2,(0,6)f ( x ) = 6 - x ^ { 2 } , \quad ( 0,6 )

(Multiple Choice)
4.7/5
(36)

Use the given information to evaluate the limit. limxcg(x)=6\lim _ { x \rightarrow c } g ( x ) = 6 limxc[6g(x)]\lim _ { x \rightarrow c } [ - 6 g ( x ) ]

(Multiple Choice)
4.7/5
(28)

Use the position function s(t)=16t2+109s ( t ) = 16 t ^ { 2 } + 109 to find the velocity in feet/second at time t=2t = 2 seconds.The velocity at time t=ct = c seconds is given by limtc[s(c)s(t)](ct)\lim _ { t \rightarrow c } \frac { [ s ( c ) - s ( t ) ] } { ( c - t ) } .

(Multiple Choice)
4.8/5
(34)
Showing 1 - 20 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)