Exam 8: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find a value of y such that the triangle with the given vertices has an area of 8 square units. ​ ​(5, 6), ​(5, 8), ​(-3, y) ​

(Multiple Choice)
4.8/5
(43)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {7x6y=405x+7y=34\left\{ \begin{aligned}7 x - 6 y & = - 40 \\- 5 x + 7 y & = 34\end{aligned} \right.

(Multiple Choice)
4.9/5
(36)

Evaluate the expression. [8562]+[5682]+[7558]\left[ \begin{array} { l l } 8 & 5 \\6 & 2\end{array} \right] + \left[ \begin{array} { l c } - 5 & - 6 \\- 8 & 2\end{array} \right] + \left[ \begin{array} { c c } 7 & - 5 \\5 & 8\end{array} \right]

(Multiple Choice)
4.8/5
(28)

Solve the system of linear equations {4x+4y=38x20y=9\left\{ \begin{array} { l } 4 x + 4 y = 3 \\8 x - 20 y = - 9\end{array} \right. using an inverse matrix.

(Multiple Choice)
4.9/5
(35)

Find the inverse of the matrix [81447]\left[ \begin{array} { c c } - 8 & 14 \\- 4 & 7\end{array} \right] (if it exists).

(Multiple Choice)
4.8/5
(36)

Find A + B. A=[5525],B=[2557]A = \left[ \begin{array} { l l } 5 & - 5 \\2 & - 5\end{array} \right] , B = \left[ \begin{array} { c c } 2 & - 5 \\- 5 & 7\end{array} \right]

(Multiple Choice)
4.8/5
(38)

Write the matrix in reduced row-echelon form. [451131113517]\left[ \begin{array} { r r r } 4 & 5 & 11 \\3 & 1 & - 11 \\3 & 5 & 17\end{array} \right]

(Multiple Choice)
4.9/5
(28)

Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). [67513]\left[ \begin{array} { c c } 6 & 7 \\- 5 & 13\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Use a determinant and the given vertices of a triangle to find the area of the triangle. Use a determinant and the given vertices of a triangle to find the area of the triangle.

(Multiple Choice)
4.9/5
(24)

Write the system of linear equations as a matrix equation AX = B, and use Gauss-Jordan elimination on the augmented matrix [AB][ A \mid B ] to solve for the matrix X. {x13x2=255x1+2x2=34\left\{ \begin{aligned}x _ { 1 } - 3 x _ { 2 } & = - 25 \\- 5 x _ { 1 } + 2 x _ { 2 } & = 34\end{aligned} \right.

(Multiple Choice)
4.9/5
(35)

Find the uncoded 1 × 3 row matrices for the message "TWO IF BY LAND"; then encode the message using the encoding matrix [011133310]\left[ \begin{array} { c c c } 0 & - 1 & 1 \\1 & - 3 & 3 \\- 3 & - 1 & 0\end{array} \right] .Show all your work.

(Essay)
4.7/5
(35)

Evaluate the determinant 4xxlnx46+lnx\left| \begin{array} { c c } 4 x & x \ln x \\4 & 6 + \ln x\end{array} \right| in which the entries are functions.

(Multiple Choice)
4.8/5
(33)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {x+yz=202xy+z=293x+2y+z=29\left\{ \begin{array} { r l c } - x + y - z & = - 20 \\2 x - y + z & = 29 \\3 x + 2 y + z & = 29\end{array} \right.

(Multiple Choice)
4.8/5
(41)

Use a determinant to find an equation of the line passing through the points. ​ (0, 0), (3, 5) ​

(Multiple Choice)
4.9/5
(31)

If possible, find AB and state the order of the result. A=[500040003],B=[500050004]A = \left[ \begin{array} { c c c } 5 & 0 & 0 \\0 & 4 & 0 \\0 & 0 & - 3\end{array} \right] , B = \left[ \begin{array} { c c c } 5 & 0 & 0 \\0 & - 5 & 0 \\0 & 0 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(37)

Write the system of linear equations as a matrix equation, AX = B. {2x1+3x2=84x1+5x2=16\left\{ \begin{array} { l } 2 x _ { 1 } + 3 x _ { 2 } = 8 \\4 x _ { 1 } + 5 x _ { 2 } = 16\end{array} \right.

(Multiple Choice)
4.8/5
(39)

The currents in an electrical network are given by the solution of the system {I1I2+I3=53I1+4I2=19I2+3I3=28\left\{ \begin{aligned}I _ { 1 } - I _ { 2 } + I _ { 3 } & = 5 \\3 I _ { 1 } + 4 I _ { 2 } & = 19 \\I _ { 2 } + 3 I _ { 3 } & = 28\end{aligned} \right. Where I1, I2 and I3 are measured in amperes.Solve the system of equations using matrices.

(Multiple Choice)
4.9/5
(25)

Find the determinant of the matrix. [051011]\left[ \begin{array} { c c } 0 & 5 \\- 10 & 11\end{array} \right]

(Multiple Choice)
4.8/5
(30)

The currents in an electrical network are given by the solutions of the system {I1+I2I3=02I1+3I3=374I2+I3=25\left\{ \begin{array} { r l r } I _ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \\2 I _ { 1 } + 3 I _ { 3 } & = 37 \\4 I _ { 2 } + I _ { 3 } & = 25\end{array} \right. where I1, I2, and I3 are measured in amperes.Solve the system of equations using matrices.

(Multiple Choice)
4.9/5
(22)

Solve the system using Gauss-Jordan elimination. {x+y+2z+t=62x+2y+z+t=622x+y+z+t=49x+y+z+2t=62\left\{ \begin{aligned}x + y + 2 z + t & = 62 \\x + 2 y + z + t & = 62 \\2 x + y + z + t & = 49 \\x + y + z + 2 t & = 62\end{aligned} \right.

(Multiple Choice)
4.8/5
(40)
Showing 121 - 140 of 283
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)