Exam 7: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the area of a sector of a circle having radius r and central angle θ\theta . If necessary, express the answer to the nearest tenth. - π3\frac { \pi } { 3 } Find the radius of a circle in which a central angle of radian determines a sector of area 57 square meters. Round to the nearest hundredth.

(Multiple Choice)
4.9/5
(40)

Graph the function over a one-period interval. - y=2+12cos4(x+π2)y = 2 + \frac { 1 } { 2 } \cos 4 \left( x + \frac { \pi } { 2 } \right)  Graph the function over a one-period interval. - y = 2 + \frac { 1 } { 2 } \cos 4 \left( x + \frac { \pi } { 2 } \right)

(Multiple Choice)
4.9/5
(30)

Solve the problem -An object is spinning around a circle with a radius of 24 centimeters. If in 14 seconds a central angle of 14\frac { 1 } { 4 } radian has been covered, what is the linear speed of the object?

(Multiple Choice)
4.9/5
(37)

Graph the function over a one-period interval. - y=13cos4(xπ)y = - \frac { 1 } { 3 } \cos 4 ( x - \pi )  Graph the function over a one-period interval. - y = - \frac { 1 } { 3 } \cos 4 ( x - \pi )

(Multiple Choice)
4.8/5
(35)

Assume that the cities lie on the same north-south line and that the radius of the earth is 6400 km. -Find the radius (to the nearest hundredth of a millimeter) of a pulley if rotating the pulley 74.5374.53 ^ { \circ } raises the pulley 16.0 mm16.0 \mathrm {~mm} .

(Multiple Choice)
5.0/5
(37)

The function graphed is of the form y y=asinbx or y=acosbx, where b>0y = a \sin b x \text { or } y = a \cos b x , \text { where } b > 0 Determine the equation of the graph. - The function graphed is of the form y  y = a \sin b x \text { or } y = a \cos b x , \text { where } b > 0  Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(48)

Find the area of a sector of a circle having radius r and central angle θ\theta . If necessary, express the answer to the nearest tenth. -Find the measure (in radians) of a central angle of a sector of area 56 square inches in a circle of radius 8 inches. Round to the nearest hundredth.

(Multiple Choice)
4.8/5
(33)

Graph the function over a one-period interval. -The temperature in Fairbanks is approximated by T(x)=37sin[2π365(x101)]+25T ( x ) = 37 \sin \left[ \frac { 2 \pi } { 365 } ( x - 101 ) \right] + 25 where T(x)T ( x ) is the temperature on day xx , with x=1x = 1 corresponding to Jan. 1 and x=365x = 365 correspondin; to Dec. 31. Estimate the temperature on day 31.

(Multiple Choice)
4.8/5
(33)

Find the exact circular function value. - cotπ\cot \pi

(Multiple Choice)
4.9/5
(37)

Find the specified quantity. -Find the period of y=5sin(6x+π2)y = 5 \sin \left( 6 x + \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.8/5
(29)

Match the function with its graph. -1) y=tanxy = \tan x 2) y=cotxy = \cot x 3) y=tanxy = - \tan x 4) y=cotxy = - \cot x  Match the function with its graph. -1)  y = \tan x  2)  y = \cot x  3)  y = - \tan x  4)  y = - \cot x

(Multiple Choice)
4.9/5
(37)

Find the specified quantity. -Find the amplitude of y=5cos(2x+π4)y = - 5 \cos \left( 2 x + \frac { \pi } { 4 } \right) .

(Multiple Choice)
4.9/5
(33)

Find the exact circular function value. - csc5π3\csc \frac { 5 \pi } { 3 }

(Multiple Choice)
4.7/5
(27)

Find the specified quantity. -Find the amplitude of y=2cos(3xπ)y = 2 \cos ( 3 x - \pi ) .

(Multiple Choice)
4.7/5
(42)

Match the function with its graph. -1) y=2+sinxy = 2 + \sin x 2) y=2+cosxy = 2 + \cos x 3) y=2+sinxy = - 2 + \sin x 4) y=2+cosxy = - 2 + \cos x  Match the function with its graph. -1)  y = 2 + \sin x  2)  y = 2 + \cos x  3)  y = - 2 + \sin x  4)  y = - 2 + \cos x

(Multiple Choice)
4.8/5
(34)

The function graphed is of the form y=cosx+c,y=sinx+c,y=cos(xd), or y=sin(xd)y = \cos x + c , y = \sin x + c , y = \cos ( x - d ) , \text { or } y = \sin ( x - d ) where d is the least possible positive value. Determine the equation of the graph. -  The function graphed is of the form  y = \cos x + c , y = \sin x + c , y = \cos ( x - d ) , \text { or } y = \sin ( x - d )  where d is the least possible positive value. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(42)

Graph the function over a one-period interval. -A coil of wire ro tating in a magnetic field induces a voltage given by e=20sin(πt4π2)e = 20 \sin \left( \frac { \pi t } { 4 } - \frac { \pi } { 2 } \right) where tt is time in seconds. Find the smallest positive time to produce a voltage of 10210 \sqrt { 2 } .

(Multiple Choice)
4.9/5
(38)

Graph the function. - y=cos32xy = \cos \frac { 3 } { 2 } x  Graph the function. - y = \cos \frac { 3 } { 2 } x

(Multiple Choice)
4.9/5
(34)

The function graphed is of the form y y=asinbx or y=acosbx, where b>0y = a \sin b x \text { or } y = a \cos b x , \text { where } b > 0 Determine the equation of the graph. -A weight attached to a spring is pulled down 7 inches below the equilibrium position. Assuming that the period of the system is 15\frac { 1 } { 5 } second, determine a trigonometric model that gives the position of the weight at time tt seconds.

(Multiple Choice)
4.9/5
(39)

Convert the degree measure to radians. Leave answer as a multiple of π.\pi . - 10801080 ^ { \circ }

(Multiple Choice)
4.7/5
(32)
Showing 41 - 60 of 286
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)