Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -A weight suspended from a spring is vibrating vertically with up being the positive direction. The function f(t)=10sin(3πt4π4)f ( t ) = 10 \sin \left( \frac { 3 \pi t } { 4 } - \frac { \pi } { 4 } \right) represents the distance in centimeters of the weight from its rest position as a function of time t, where t is measured in seconds. Find the smallest positive value of t for which the displacement of the weight above its rest position is 5 cm. Round answer to three decimal places, if necessary.

(Multiple Choice)
4.8/5
(33)

Choose the one alternative that best completes the statement or answers the question. Complete the identity. - tan(πθ)=\tan ( \pi - \theta ) = ?

(Multiple Choice)
4.8/5
(32)

Write the word or phrase that best completes each statement or answers the question. Establish the identity. - cotx1+cscx=cscx1cotx\frac { \cot x } { 1 + \csc x } = \frac { \csc x - 1 } { \cot x }

(Essay)
4.7/5
(36)

Write the word or phrase that best completes each statement or answers the question. Establish the identity. - sec(π2+u)=cscu\sec \left( \frac { \pi } { 2 } + u \right) = - \csc u

(Essay)
4.8/5
(37)

Find the exact value under the given conditions. - sinα=513,3π2<α<2π;tanβ=724,π2<β<π\sin \alpha = - \frac { 5 } { 13 } , \frac { 3 \pi } { 2 } < \alpha < 2 \pi ; \quad \tan \beta = - \frac { 7 } { 24 } , \frac { \pi } { 2 } < \beta < \pi \quad Find cos(α+β)\cos ( \alpha + \beta ) .

(Multiple Choice)
4.8/5
(33)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -Find tanθ2\tan \frac { \theta } { 2 } , given that tanθ=3\tan \theta = 3 and θ\theta terminates in π<θ<3π/2\pi < \theta < 3 \pi / 2 .

(Multiple Choice)
4.8/5
(46)

Write the word or phrase that best completes each statement or answers the question. Establish the identity. - 1sintcost=cost1+sint\frac { 1 - \sin t } { \cos t } = \frac { \cos t } { 1 + \sin t }

(Essay)
4.8/5
(43)

Write the word or phrase that best completes each statement or answers the question. Establish the identity. - 12secx3sec2xtan2x=13secx1secx\frac { 1 - 2 \sec x - 3 \sec ^ { 2 } x } { - \tan ^ { 2 } x } = \frac { 1 - 3 \sec x } { 1 - \sec x }

(Essay)
5.0/5
(40)

Write the trigonometric expression as an algebraic expression containing u and v. - cos(sin1u+cos1v)\cos \left( \sin ^ { - 1 } u + \cos ^ { - 1 } v \right)

(Multiple Choice)
4.9/5
(44)

Find the exact solution of the equation. - 2cos1x=π2 \cos ^ { - 1 } x = \pi

(Multiple Choice)
4.8/5
(40)

Express the sum or difference as a product of sines and/or cosines. - sin(8θ)sin(4θ)\sin ( 8 \theta ) - \sin ( 4 \theta )

(Multiple Choice)
4.9/5
(29)

Write the trigonometric expression as an algebraic expression containing u and v. - sin(tan1u+tan1v)\sin \left( \tan ^ { - 1 } u + \tan ^ { - 1 } v \right)

(Multiple Choice)
4.8/5
(29)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -Find sinθ2\sin \frac { \theta } { 2 } , given that cosθ=14\cos \theta = \frac { 1 } { 4 } and θ\theta terminates in 0<θ<900 < \theta < 90 ^ { \circ } .

(Multiple Choice)
4.9/5
(43)

Write the word or phrase that best completes each statement or answers the question. Use a calculator to solve the equation on the interval 0 . Round the answer to one decimal place if necessary. 0x<2π0 \leq x < 2 \pi - x+3sinx=1x + 3 \sin x = 1

(Short Answer)
4.8/5
(38)

Find the exact value of the expression. - cos[2sin1(513)]\cos \left[ 2 \sin ^ { - 1 } \left( - \frac { 5 } { 13 } \right) \right]

(Multiple Choice)
4.7/5
(39)

Solve the problem. -If cosθ=513\cos \theta = - \frac { 5 } { 13 } , and θ\theta terminates in quadrant II, then find cos2θ\cos 2 \theta .

(Multiple Choice)
4.8/5
(34)

Use the Half-angle Formulas to find the exact value of the trigonometric function. - sin165\sin 165 ^ { \circ }

(Multiple Choice)
4.8/5
(44)

Solve the problem. -If tanθ=724\tan \theta = \frac { 7 } { 24 } , and π<θ<3π2\pi < \theta < \frac { 3 \pi } { 2 } , then find tan2θ\tan 2 \theta .

(Multiple Choice)
4.8/5
(34)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -Find sinθ2\sin \frac { \theta } { 2 } , given that sinθ=35\sin \theta = - \frac { 3 } { 5 } and θ\theta terminates in 270<θ<360270 ^ { \circ } < \theta < 360 ^ { \circ } .

(Multiple Choice)
4.9/5
(35)

Solve the problem using Snell's Law: sinθ1sinθ2=v1v2\frac { \sin \theta _ { 1 } } { \sin \theta _ { 2 } } = \frac { v _ { 1 } } { v _ { 2 } } -A light beam in air travels at 2.99×1082.99 \times 10 ^ { 8 } meters per second. If its angle of incidence to a second medium is 4242 ^ { \circ } and its angle of refraction in the second medium is 3232 ^ { \circ } , what is its speed in the second medium (to two decimal places)?

(Multiple Choice)
4.8/5
(40)
Showing 121 - 140 of 342
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)