Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The rectangular coordinates of a point are given. Find polar coordinates for the point. - (100,30)( 100 , - 30 ) Round the polar coordinates to two decimal places, with θ\theta in degrees.

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

C

Solve the problem. Leave your answer in polar form. - z=1-i w=1-i Find zw\frac { z } { w } .

Free
(Multiple Choice)
4.7/5
(37)
Correct Answer:
Verified

C

Choose the one alternative that best completes the statement or answers the question. Find the direction angles of the vector. Round to the nearest degree, if necessary. - v=ij+2k\mathbf { v } = \mathbf { i } - \mathbf { j } + 2 \mathbf { k }

Free
(Multiple Choice)
4.7/5
(35)
Correct Answer:
Verified

A

Find the angle between v and w. Round your answer to one decimal place, if necessary. - v=5i+7j,w=6i4jv = - 5 i + 7 \mathbf { j } , \quad \mathbf { w } = - 6 \mathbf { i } - 4 \mathbf { j }

(Multiple Choice)
4.8/5
(31)

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (5,3π4)\left( 5 , \frac { 3 \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(28)

Solve the problem. Round your answer to the nearest tenth. -A person is pulling a freight cart with a force of 40 pounds. How much work is done in moving the cart 30 feet if the cart's handle makes an angle of 22° with the ground?

(Multiple Choice)
5.0/5
(46)

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (7,2π3)\left( 7 , \frac { 2 \pi } { 3 } \right)

(Multiple Choice)
4.8/5
(35)

Write the complex number in rectangular form. - 8(cosπ6+isinπ6)8 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right)

(Multiple Choice)
4.8/5
(28)

Find the distance from P1 to P2. - P1=(0,0,0)\mathrm { P } _ { 1 } = ( 0,0,0 ) and P2=(2,4,3)\mathrm { P } _ { 2 } = ( 2,4,3 )

(Multiple Choice)
4.8/5
(35)

Test the equation for symmetry with respect to the given axis, line, or pole. - r=6+2cosθ; the pole \mathrm { r } = 6 + 2 \cos \theta \text {; the pole }

(Multiple Choice)
4.9/5
(33)

Find the indicated cross product. - v=6i+5j3k,w=4i4k\mathbf { v } = 6 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k } , \quad \mathbf { w } = - 4 \mathbf { i } - 4 \mathbf { k } Find v×wv \times w .

(Multiple Choice)
4.9/5
(43)

Match the point in polar coordinates with either A, B, C, or D on the graph. - (3,π3)\left( - 3 , - \frac { \pi } { 3 } \right)  Match the point in polar coordinates with either A, B, C, or D on the graph. - \left( - 3 , - \frac { \pi } { 3 } \right)

(Multiple Choice)
4.9/5
(31)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - rsinθ=4r \sin \theta = 4  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4

(Multiple Choice)
4.8/5
(25)

Plot the point given in polar coordinates. - (4,5π4)\left( 4 , \frac { - 5 \pi } { 4 } \right)  Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(33)

Write the word or phrase that best completes each statement or answers the question. Solve the problem. -Find a unit vector normal to the plane containing u=i+j+4k and v=2i3j+k\mathbf { u } = - \mathbf { i } + \mathbf { j } + 4 \mathbf { k } \text { and } \mathbf { v } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k }

(Essay)
4.7/5
(38)

Find the area of the parallelogram. - P1(0,0,0),P2(4,2,1),P3(2,3,1)\mathrm { P } _ { 1 } ( 0,0,0 ) , \mathrm { P } _ { 2 } ( 4,2,1 ) , \mathrm { P } _ { 3 } ( - 2,3,1 )

(Multiple Choice)
4.9/5
(37)

Write the complex number in polar form. Express the argument in degrees, rounded to the nearest tenth, if necessary. - 6- 6

(Multiple Choice)
4.8/5
(36)

Find the dot product v · w. - v=2i+j+3k\mathbf { v } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } and w=i+2j2k\mathbf { w } = \mathrm { i } + 2 \mathbf { j } - 2 \mathbf { k }

(Multiple Choice)
4.8/5
(35)

Graph the polar equation. - r=cscθ2,0<θ<πr=\csc \theta-2,0<\theta<\pi  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi

(Multiple Choice)
4.8/5
(34)

Find the unit vector having the same direction as v. - v=3i+j\mathbf { v } = - 3 \mathbf { i } + \mathbf { j }

(Multiple Choice)
4.8/5
(25)
Showing 1 - 20 of 253
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)