Exam 3: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the vertical asymptotes of the rational function. - f(x)=x(x1)49x2+84x+20f ( x ) = \frac { x ( x - 1 ) } { 49 x ^ { 2 } + 84 x + 20 }

(Multiple Choice)
4.7/5
(43)

Use transformations of the graph o to graph the function. y=x4 or y=x5y = x ^ { 4 } \text { or } y = x ^ { 5 } - f(x)=12(x+4)4+3f ( x ) = \frac { 1 } { 2 } ( x + 4 ) ^ { 4 } + 3  Use transformations of the graph o to graph the function.  y = x ^ { 4 } \text { or } y = x ^ { 5 }  - f ( x ) = \frac { 1 } { 2 } ( x + 4 ) ^ { 4 } + 3

(Multiple Choice)
4.8/5
(37)

Use the Factor Theorem to determine whether x - c is a factor of f(x). - 7x3+17x211x+3;x+37 x ^ { 3 } + 17 x ^ { 2 } - 11 x + 3 ; x + 3

(Multiple Choice)
4.9/5
(36)

Find the domain of the rational function. - h(x)=x+2x236h ( x ) = \frac { x + 2 } { x ^ { 2 } - 36 }

(Multiple Choice)
4.8/5
(43)

Use the Factor Theorem to determine whether x - c is a factor of f(x). - f(x)=15x3+49x249x99;x113f ( x ) = 15 x ^ { 3 } + 49 x ^ { 2 } - 49 x - 99 ; x - \frac { 11 } { 3 }

(Multiple Choice)
4.8/5
(37)

Use the Factor Theorem to determine whether x - c is a factor of f(x). - f(x)=x412x264;x4f ( x ) = x ^ { 4 } - 12 x ^ { 2 } - 64 ; x - 4

(Multiple Choice)
4.8/5
(40)

Use transformations of the graph o to graph the function. y=x4 or y=x5y = x ^ { 4 } \text { or } y = x ^ { 5 } - f(x)=2x4f(x)=-2 x^{4}  Use transformations of the graph o to graph the function.  y = x ^ { 4 } \text { or } y = x ^ { 5 }  - f(x)=-2 x^{4}

(Multiple Choice)
4.8/5
(33)

Give the equation of the oblique asymptote, if any, of the function. - h(x)=7x29x45x22x+5h ( x ) = \frac { 7 x ^ { 2 } - 9 x - 4 } { 5 x ^ { 2 } - 2 x + 5 }

(Multiple Choice)
4.7/5
(38)

Find the vertical asymptotes of the rational function. - g(x)=6xx+5g ( x ) = \frac { 6 x } { x + 5 }

(Multiple Choice)
4.8/5
(35)

Find the vertical asymptotes of the rational function. - R(x)=3x2x2+9x36R ( x ) = \frac { - 3 x ^ { 2 } } { x ^ { 2 } + 9 x - 36 }

(Multiple Choice)
4.7/5
(42)

Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the zeros to factor f over the real numbers. - f(x)=5x48x3+23x232x+12f ( x ) = 5 x ^ { 4 } - 8 x ^ { 3 } + 23 x ^ { 2 } - 32 x + 12

(Multiple Choice)
4.8/5
(42)

Use the graph to determine the domain and range of the function. -Use the graph to determine the domain and range of the function. -

(Multiple Choice)
4.7/5
(45)

State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not. - f(x)=1+6xf ( x ) = 1 + \frac { 6 } { x }

(Multiple Choice)
4.7/5
(35)

Find all zeros of the function and write the polynomial as a product of linear factors. - f(x)=x4+5x3+15x2+45x+54f ( x ) = x ^ { 4 } + 5 x ^ { 3 } + 15 x ^ { 2 } + 45 x + 54

(Multiple Choice)
4.9/5
(37)

For the polynomial, list each real zero and its multiplicity. Determine whether the graph crosses or touches the x-axis at each x -intercept. - f(x)=(x+14)2(x2+7)3f ( x ) = \left( x + \frac { 1 } { 4 } \right) ^ { 2 } \left( x ^ { 2 } + 7 \right) ^ { 3 }

(Multiple Choice)
4.9/5
(42)

Find the vertical asymptotes of the rational function. - f(x)=x416xx3f ( x ) = \frac { x - 4 } { 16 x - x ^ { 3 } }

(Multiple Choice)
4.9/5
(41)

Graph the function. - f(x)=x25x+4(x5)2f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }  Graph the function. - f ( x ) = \frac { x ^ { 2 } - 5 x + 4 } { ( x - 5 ) ^ { 2 } }

(Multiple Choice)
4.7/5
(29)

Write the word or phrase that best completes each statement or answers the question. Analyze the graph of the given function f as follows: (a) Determine the end behavior: find the power function that the graph of f resembles for large values of |x|. (b) Find the x- and y-intercepts of the graph. (c) Determine whether the graph crosses or touches the x-axis at each x-intercept. (d) Graph f using a graphing utility. (e) Use the graph to determine the local maxima and local minima, if any exist. Round turning points to two decimal places. (f) Use the information obtained in (a) - (e) to draw a complete graph of f by hand. Label all intercepts and turning points. (g) Find the domain of f. Use the graph to find the range of f. (h) Use the graph to determine where f is increasing and where f is decreasing. - f(x)=(x3)(x1)(x+2)f ( x ) = ( x - 3 ) ( x - 1 ) ( x + 2 )

(Essay)
4.8/5
(43)

Give the maximum number of zeros the polynomial function may have. Use Descarte's Rule of Signs to determine how many positive and how many negative zeros it may have. - f(x)=x218f ( x ) = x ^ { 2 } - 18

(Multiple Choice)
4.7/5
(30)

Give the maximum number of zeros the polynomial function may have. Use Descarte's Rule of Signs to determine how many positive and how many negative zeros it may have. - f(x)=x6x5x45x3+2x2+2x+3f ( x ) = x ^ { 6 } - x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 3

(Multiple Choice)
4.9/5
(29)
Showing 21 - 40 of 354
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)