Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write out the sum. Do not evaluate. - k=15k+1k+2\sum _ { k = 1 } ^ { 5 } \frac { k + 1 } { k + 2 }

(Multiple Choice)
4.7/5
(34)

Find the indicated term using the given information. - a18=87,a20=99;a6\mathrm { a } _ { 18 } = 87 , \mathrm { a } _ { 20 } = 99 ; \mathrm { a } _ { 6 }

(Multiple Choice)
4.8/5
(40)

Determine whether the sequence is arithmetic. - 1,1,3,5,7,- 1,1,3,5,7 , \ldots

(Multiple Choice)
4.8/5
(29)

Choose the one alternative that best completes the statement or answers the question. Evaluate the expression. - (105)\left( \begin{array} { c } 10 \\ 5 \end{array} \right)

(Multiple Choice)
4.8/5
(27)

Find the sum of the sequence. - k=14(1)k8k\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } \cdot - 8 k

(Multiple Choice)
4.8/5
(27)

Write the word or phrase that best completes each statement or answers the question. Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 3+8+13++(5n2)=n2(5n+1)3 + 8 + 13 + \ldots + ( 5 n - 2 ) = \frac { n } { 2 } ( 5 n + 1 )

(Essay)
4.8/5
(40)

Write out the first five terms of the sequence. - {4n2}\{ 4 n - 2 \}

(Multiple Choice)
4.8/5
(34)

Write the word or phrase that best completes each statement or answers the question. Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 7+14+21++7n=7n(n+1)27 + 14 + 21 + \ldots + 7 n = \frac { 7 n ( n + 1 ) } { 2 }

(Essay)
4.8/5
(27)

An arithmetic sequence is given. Find the common difference and write out the first four terms. - {3n+2}\{ 3 n + 2 \}

(Multiple Choice)
4.9/5
(36)

Choose the one alternative that best completes the statement or answers the question. - a1=z;an=an1+Ua _ { 1 } = z ; a _ { n } = a _ { n - 1 } + U

(Multiple Choice)
4.9/5
(35)

Find the sum of the arithmetic sequence. - (6)+(1)+4+9++39( - 6 ) + ( - 1 ) + 4 + 9 + \ldots + 39

(Multiple Choice)
4.9/5
(40)

Evaluate the factorial expression. - (n+9)!n+9\frac { ( n + 9 ) ! } { n + 9 }

(Multiple Choice)
4.7/5
(41)

The sequence is defined recursively. Write the first four terms. - a1=2,a2=5a _ { 1 } = 2 , a _ { 2 } = 5 and an=an23an1a _ { n } = a _ { n - 2 } - 3 a _ { n } - 1 for n3n \geq 3

(Multiple Choice)
4.9/5
(41)

Express the repeating decimal as a fraction in lowest terms. - 0.4=410+4100+41,000+410,0000 . \overline { 4 } = \frac { 4 } { 10 } + \frac { 4 } { 100 } + \frac { 4 } { 1,000 } + \frac { 4 } { 10,000 } \ldots

(Multiple Choice)
4.8/5
(46)

Write out the first five terms of the sequence. - {4(4n2)}\{ 4 ( 4 n - 2 ) \}

(Multiple Choice)
4.7/5
(38)

Determine whether the given sequence is arithmetic, geometric, or neither. If arithmetic, find the common difference. If geometric, find the common ratio. - {4n2}\{ 4 n - 2 \}

(Multiple Choice)
4.9/5
(44)

Write the word or phrase that best completes each statement or answers the question. Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - (112)(113)(11n+1)=1n+1\left( 1 - \frac { 1 } { 2 } \right) \left( 1 - \frac { 1 } { 3 } \right) \ldots \left( 1 - \frac { 1 } { n + 1 } \right) = \frac { 1 } { n + 1 }

(Essay)
4.7/5
(35)

Find the sum of the arithmetic sequence. -2 + 4 + 6 + ... + 1,836

(Multiple Choice)
4.9/5
(35)

Write the word or phrase that best completes each statement or answers the question. -Initially, a pendulum swings through an arc of 3 feet. On each successive swing, the length of the arc is 0.8 of the previous length. After 10 swings, what total length will the pendulum have swung (to the nearest tenth of a foot)?

(Short Answer)
4.9/5
(36)

Use a graphing utility to find the sum of the geometric sequence. Round answer to two decimal places, if necessary. - 4+12+36+108+324++43104 + 12 + 36 + 108 + 324 + \ldots + 4 \cdot 310

(Multiple Choice)
4.8/5
(33)
Showing 41 - 60 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)