Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -  Find the 10 th term of the geometric sequence 13,1,3,\text { Find the } 10 \text { th term of the geometric sequence } \frac { 1 } { 3 } , 1,3 , \ldots

(Multiple Choice)
4.9/5
(31)

Find the indicated term using the given information. - 5,2,1,;5,2 , - 1 , \ldots ; a 44

(Multiple Choice)
4.9/5
(43)

Find the indicated term using the given information. - a45=1475,a13=515;a3\mathrm { a } _ { 45 } = - \frac { 147 } { 5 } , \mathrm { a } _ { 13 } = - \frac { 51 } { 5 } ; \mathrm { a } _ { 3 }

(Multiple Choice)
4.8/5
(32)

Write the word or phrase that best completes each statement or answers the question. -For the geometric sequence 64, 16, 4, 1, ... , find an.

(Essay)
4.9/5
(44)

If the sequence is geometric, find the common ratio. If the sequence is not geometric, say so. - 34,316,364,3256,31,024\frac { 3 } { 4 } , \frac { 3 } { 16 } , \frac { 3 } { 64 } , \frac { 3 } { 256 } , \frac { 3 } { 1,024 }

(Multiple Choice)
4.9/5
(38)

Use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of the sequence with the given first term, a1, and common ratio, r. -Find a9 when a1 = 2, r = -2.

(Multiple Choice)
4.9/5
(41)

Choose the one alternative that best completes the statement or answers the question. Evaluate the expression. - (60)\left( \begin{array} { l } 6 \\ 0 \end{array} \right)

(Multiple Choice)
4.7/5
(27)

Use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of the sequence with the given first term, a1, and common ratio, r. -Find ag when a1=50,000,r=0.1a _ { 1 } = 50,000 , r = 0.1 .

(Multiple Choice)
4.8/5
(39)

Solve the problem. -Suppose that certain bacteria can double their size and divide every 30 minutes. Write a recursive sequence that describes this growth where each value of n\mathrm { n } represents a 30 -minute interval. Let a 1=4901 = 490 represent the initial number of bacteria present.

(Multiple Choice)
4.9/5
(33)

Solve the problem. -The population of a town is increasing by 300 inhabitants each year. If its population at the beginning of 1990 was 26,587, what was its population at the beginning of 1996?

(Multiple Choice)
4.9/5
(30)

Determine whether the infinite geometric series converges or diverges. If it converges, find its sum. - 20+10+5+20 + 10 + 5 + \cdots

(Multiple Choice)
4.8/5
(39)

Express the sum using summation notation. - 51494+51395+51296++57911\frac { 5 ^ { 14 } } { 9 ^ { 4 } } + \frac { 5 ^ { 13 } } { 9 ^ { 5 } } + \frac { 5 ^ { 12 } } { 9 ^ { 6 } } + \ldots + \frac { 5 ^ { 7 } } { 9 ^ { 11 } }

(Multiple Choice)
4.8/5
(33)

Use a graphing utility to find the sum of the geometric sequence. Round answer to two decimal places, if necessary. - k=11217(2)k1\sum _ { k = 1 } ^ { 12 } \frac { 1 } { 7 } \cdot ( - 2 ) ^ { \mathrm { k } - 1 }

(Multiple Choice)
4.8/5
(38)

Use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of the sequence with the given first term, a1, and common ratio, r. -Find a7 for the sequence 0.7, 0.07, 0.007, . . .

(Multiple Choice)
4.9/5
(36)

Determine whether the sequence is arithmetic. - 5,15,45,135,405,5 , - 15,45 , - 135,405 , \ldots

(Multiple Choice)
4.8/5
(43)

Expand the expression using the Binomial Theorem. - (2x+y)6( 2 x + y ) ^ { 6 }

(Multiple Choice)
4.9/5
(39)

Find the sum. - 17+37+327+337++3n17\frac { 1 } { 7 } + \frac { 3 } { 7 } + \frac { 3 ^ { 2 } } { 7 } + \frac { 3 ^ { 3 } } { 7 } + \cdots + \frac { 3 ^ { n - 1 } } { 7 }

(Multiple Choice)
4.8/5
(34)

Write out the sum. Do not evaluate. - k=14(k+6)\sum _ { k = 1 } ^ { 4 } ( k + 6 )

(Multiple Choice)
4.9/5
(42)

Solve the problem. -For the geometric sequence 2,1,12,14,2,1 , \frac { 1 } { 2 } , \frac { 1 } { 4 } , \ldots , find an\mathrm { a } _ { \mathrm { n } } .

(Multiple Choice)
4.8/5
(41)

Write the word or phrase that best completes each statement or answers the question. - a1=135 and an+1=13(an) for n2a _ { 1 } = 135 \text { and } a _ { n + 1 } = \frac { 1 } { 3 } \left( a _ { n } \right) \text { for } n \geq 2

(Short Answer)
4.9/5
(29)
Showing 81 - 100 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)