Exam 13: Inference in Linear Models

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the given set of points to compute the residual standard deviation . x 12 20 19 17 19 10 y 43 69 65 58 64 36 x=13

(Multiple Choice)
4.8/5
(45)

Use the given set of points to construct a 95%95 \% prediction interval for an individual response for the given value of xx .  Use the given set of points to construct a  95 \%  prediction interval for an individual response for the given value of  x .

(Multiple Choice)
4.8/5
(35)

The following MINITAB output presents a multiple regression equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 } +b4x4+ b _ { 4 } x _ { 4 } . The regression equation is Y=3.9695+1.4577X11.7859X2+0.7686X3+0.0777X4\mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4 Predictor Coef SE Coef T P Constant 3.9695 0.8785 0.9299 0.327 X1 1.4577 0.6034 3.5107 0.003 X2 -1.7859 0.7302 -3.1148 0.005 X3 0.7686 0.6732 1.9294 0.088 X4 0.0777 0.7569 -1.0782 0.352  The following MINITAB output presents a multiple regression equation  y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }   + b _ { 4 } x _ { 4 } . The regression equation is  \mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\ \text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\ \text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\ \text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\ \text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352 \end{array}        \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\ \text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\ \text { Total } & 38 & 2,232.6 & & & \\ \hline \end{array}   Is the model useful for prediction? Use the  = 0.05 level.  Analysis of Variance \text { Analysis of Variance } Source DF SS MS F P Regression 4 1,148.7 287.2 9.0031 0.003 Residual Error 34 1,083.9 31.9 Total 38 2,232.6 Is the model useful for prediction? Use the  = 0.05 level.

(True/False)
4.8/5
(35)

In a study of reaction times, the time to respond to a visual stimulus (x) and the time to respond to an auditory stimulus (y) were recorded for each of 8 subjects. Times were measured in thousandths Of a second. The results are presented in the following table. Visual Auditory 193 189 240 222 239 226 236 225 200 189 161 158 214 209 204 193 Construct a 95% confidence interval for the slope of the least-squares regression line.

(Multiple Choice)
4.9/5
(38)

Use the given set of points to test the null hypothesis H0:β1=0 versus H1:β10. Use the α=0.01H _ { 0 } : \beta _ { 1 } = 0 \text { versus } H _ { 1 } : \beta _ { 1 } \neq 0 . \text { Use the } \alpha = 0.01 level of significance. x 14 7 15 10 9 6 14 15 y 32 17 36 26 21 15 34 37

(Multiple Choice)
4.9/5
(40)

The following MINITAB output presents a confidence interval for a mean response and a prediction interval for an individual response. New Obs Fit SE Fit 95.0\% CI 95.0\% PI 1 9.582 1.189 (3.264,15.900) (2.795,16.369) Values of Predictors for New Observations New Obs X1 X2 X3 1 1.94 1.11 1.17 What is the 95% confidence interval for the mean response?

(Short Answer)
5.0/5
(41)

In a study of reaction times, the time to respond to a visual stimulus (x) and the time to respond to an auditory stimulus (y) were recorded for each of 8 subjects. Times were measured in thousandths of A second. The results are presented in the following table. Visual Auditory 249 246 194 241 210 244 197 245 208 243 166 243 239 252 151 242 Construct a 95% prediction interval for the auditory response time for a particular subject whose Visual response time is 182.

(Multiple Choice)
4.8/5
(38)

Use the given set of points to compute . x 11 5 7 6 9 8 14 12 y 24 17 19 20 23 17 30 25

(Multiple Choice)
4.9/5
(45)

The following MINITAB output presents a 95% confidence interval for the mean ozone level on days when the relative humidity is 40%, and a 95% prediction interval for the ozone level on a Particular day when the relative humidity is 40%. The units of ozone are parts per billion. Predicted Values for New Observations New Obs Fit SE Fit 95.0\% CI 95.0\% PI 1 44.17 1.5 (41.23,47.11) (28.00,60.34) Values of Predictors for New Observations  The following MINITAB output presents a 95% confidence interval for the mean ozone level on days when the relative humidity is 40%, and a 95% prediction interval for the ozone level on a Particular day when the relative humidity is 40%. The units of ozone are parts per billion. Predicted Values for New Observations   \begin{array} { l r c c c } \text { New Obs } & \text { Fit } & \text { SE Fit } & 95.0 \% \text { CI } & 95.0 \% \text { PI } \\ 1 & 44.17 & 1.5 & ( 41.23,47.11 ) & ( 28.00,60.34 ) \end{array}   Values of Predictors for New Observations    What is the  95 \%  confidence interval for the mean ozone level for days when the relative humidity is  40 \%  ? What is the 95%95 \% confidence interval for the mean ozone level for days when the relative humidity is 40%40 \% ?

(Multiple Choice)
4.7/5
(46)

Use the given set of points to compute the sum of squares for x,(x- . x 5 9 10 7 7 10 6 8 y 16 22 27 20 21 22 20 21

(Multiple Choice)
4.8/5
(35)

In a study of reaction times, the time to respond to a visual stimulus (x) and the time to respond to an auditory stimulus (y) were recorded for each of 8 subjects. Times were measured in thousandths of a second. The results are presented in the following table. Visual Auditory 168 245 171 242 185 240 235 249 171 239 182 246 173 240 249 246 i). Compute the least-squares regression line for predicting auditory response time (y) from visual res time (x). ii). Construct a 99% confidence interval for the slope of the least-squares regression line. iii). Test H0: β1\beta _ { 1 } =0 versus β10\beta _ { 1 } \neq 0 .Use the α=0.01\alpha = 0.01 =0.01 level of significance.

(Short Answer)
4.9/5
(41)
Showing 41 - 51 of 51
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)