Exam 2: One-Dimensional Motion
Exam 1: Getting Started24 Questions
Exam 2: One-Dimensional Motion66 Questions
Exam 3: Vectors47 Questions
Exam 4: Two- and Three-Dimensional Motion79 Questions
Exam 5: Newtons Laws of Motion103 Questions
Exam 6: Applications of Newtons Laws of Motion64 Questions
Exam 7: Gravity47 Questions
Exam 8: Conservation of Energy31 Questions
Exam 9: Energy in Nonisolated Systems41 Questions
Exam 10: Systems of Particles and Conservation of Momentum25 Questions
Exam 11: Collisions43 Questions
Exam 12: Rotation I: Kinematics and Dynamics65 Questions
Exam 13: Rotation II: a Conservation Approach42 Questions
Exam 14: Static Equilibrium, Elasticity, and Fracture34 Questions
Exam 15: Fluids53 Questions
Exam 16: Oscillations41 Questions
Exam 17: Traveling Waves46 Questions
Exam 18: Superposition and Standing Waves56 Questions
Exam 19: Temperature, Thermal Expansion, and Gas Laws45 Questions
Exam 20: Kinetic Theory of Gases19 Questions
Exam 21: Heat and the First Law of Thermodynamics35 Questions
Exam 22: Entropy and the Second Law of Thermodynamics55 Questions
Exam 23: Electric Forces34 Questions
Exam 24: Electric Fields48 Questions
Exam 25: Gausss Law80 Questions
Exam 26: Electric Potential96 Questions
Exam 27: Capacitors and Batteries63 Questions
Exam 28: Current and Resistance32 Questions
Exam 29: Direct Current Dc Circuits84 Questions
Exam 30: Magnetic Fields and Forces75 Questions
Exam 31: Gausss Law for Magnetism and Amperes Law87 Questions
Exam 32: Faradays Law of Induction56 Questions
Exam 33: Inductors and Ac Circuits86 Questions
Exam 34: Maxwells Equations and Electromagnetic Waves41 Questions
Exam 35: Diffraction and Interference48 Questions
Exam 36: Applications of the Wave Model31 Questions
Exam 37: Reflection and Images Formed by Reflection25 Questions
Exam 38: Refraction and Images Formed by Refraction54 Questions
Exam 39: Relativity45 Questions
Select questions type
In 2.0 s, a particle moving with constant acceleration along the x axis goes from x = 10 m to x = 50 m. The velocity at the end of this time interval is 10 m/s. What is the acceleration of the particle?
Free
(Multiple Choice)
4.9/5
(28)
Correct Answer:
D
The speed of an object is given by v = 5.00t2 +4, where v is in m/s and t is in s. What is the acceleration of the object at t = 2.00 s?
Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
E
At t = 0, a particle is located at x = 25 m and has a velocity of 15 m/s in the positive x direction. The acceleration of the particle varies with time as shown in the diagram. What is the velocity of the particle at t = 5.0 s?

Free
(Multiple Choice)
4.9/5
(42)
Correct Answer:
C
A particle is moving with a constant acceleration of 4.0 m/s2. Its speed at t = 1.0 s is 4.0 m/s and at t = 3.0 s it is 12.0 m/s. What is the area under the position-time graph for the interval from t = 1.0 s to t = 3.0 s?
(Multiple Choice)
4.8/5
(32)
The position of a particle as it moves along the x axis is given for t > 0 by x = (t3 − 3t2 + 6t) m, where t is in s. Where is the particle when it achieves its minimum speed (after t = 0)?
(Multiple Choice)
4.8/5
(37)
Two children start at one end of a street, the origin, run to the other end, then head back. On the way back Joan is ahead of Mike. Which statement is correct about the distances run and the displacements from the origin?
(Multiple Choice)
4.7/5
(34)
A ball thrown vertically from ground level is caught 3.0 s later when it is at its highest point by a person on a balcony which is 14 m above the ground. Determine the initial speed of the ball.
(Multiple Choice)
5.0/5
(33)
When starting from rest at the bottom of a straight road with constant upward slope, Joan bicycles to the top 50.0 s ahead of Sally, whose travel time is 5.00 minutes. What is the ratio of Joan's acceleration to Sally's acceleration?
(Multiple Choice)
4.7/5
(32)
A particle is moving at constant velocity. Its position at t = 1.0 s is 3.0 m and its position at t = 4.0 s is 15.0 m. What is the slope of the position-time graph for this particle?
(Multiple Choice)
4.9/5
(42)
The area under a graph of vx vs. t from t = ti to t = tf represents
(Multiple Choice)
4.9/5
(44)
A bicyclist starts down a hill with an initial speed of 2.0 m/s. She moves down the hill with a constant acceleration, arriving at the bottom of the hill with a speed of 8.0 m/s. If the hill is 12 m long, how long did it take the bicyclist to travel down the hill?
(Short Answer)
4.9/5
(28)
A boy on a skate board skates off a horizontal bench at a velocity of 10 m/s. One tenth of a second after he leaves the bench, to two significant figures, the magnitudes of his velocity and acceleration are:
(Multiple Choice)
4.8/5
(31)
In 20 minutes, Kara ran 2.40 km on a treadmill facing due east. Relative to the gym, what were her displacement and average velocity during this time interval?
(Multiple Choice)
4.8/5
(33)
Two identical balls are at rest side by side at the bottom of a hill. Some time after ball A is kicked up the hill, ball B is given a kick up the hill. Ball A is headed downhill when it passes ball B headed up the hill. At the instant when ball A passes ball B,
(Multiple Choice)
4.8/5
(25)
A particle moving along the x axis has a position given by x = 54t − 2.0t3 m. At the time t = 3.0 s, the speed of the particle is zero. Which statement is correct?
(Multiple Choice)
4.7/5
(32)
A stone is thrown from the top of a building with an initial velocity of 20 m/s downward. The top of the building is 60 m above the ground. How much time elapses between the instant of release and the instant of impact with the ground?
(Multiple Choice)
4.9/5
(34)
A peregrine falcon dives at a pigeon. The falcon starts with zero downward velocity and falls with the acceleration of gravity. If the pigeon is 76.0 m below the initial height of the falcon, how long does it take the falcon to intercept the pigeon?
(Short Answer)
4.8/5
(30)
The position of a particle as it moves along the x axis is given by x = 15e−2t m, where t is in s. What is the acceleration of the particle at t = 1.0 s?
(Multiple Choice)
4.8/5
(34)
Five motion diagrams in which points represent the positions of an object at equal time intervals are shown below. Which statement is correct?

(Multiple Choice)
5.0/5
(37)
At t = 0, a particle is located at x = 25 m and has a velocity of 15 m/s in the positive x direction. The acceleration of the particle varies with time as shown in the diagram. What is the position of the particle at t = 5.0 s? 

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 66
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)