Exam 3: Exponential and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Identify the graph that represents the function. y=5e2(x1)2y = 5 e ^ { - 2 ( x - 1 ) ^ { 2 } }

(Multiple Choice)
4.9/5
(33)

Solve the logarithmic equation below algebraically. Round your result to three decimal places. 5log4(x+1)=125 \log _ { 4 } ( x + 1 ) = 12

(Multiple Choice)
4.9/5
(37)

Condense the expression 15[log4x+log46][log4y]\frac { 1 } { 5 } \left[ \log _ { 4 } x + \log _ { 4 } 6 \right] - \left[ \log _ { 4 } y \right] to the logarithm of a single term.

(Multiple Choice)
4.8/5
(38)

Identify the graph that represents the function. y=ln1x+1y = \ln \frac { 1 } { x + 1 }

(Multiple Choice)
4.9/5
(41)

What is the value of the function f(x)=3.8e1.5xf ( x ) = 3.8 e ^ { - 1.5 x } at x=2.5?x = 2.5 ? Round to 3 decimal places.

(Multiple Choice)
4.8/5
(36)

Evaluate the function f(x)=log4xf ( x ) = \log _ { 4 } x at x=116x = \frac { 1 } { 16 } without using a calculator.

(Multiple Choice)
4.9/5
(41)

Identify the graph of the function. f(x)=(12)1xf ( x ) = \left( \frac { 1 } { 2 } \right) ^ { 1 - x }

(Multiple Choice)
4.8/5
(41)

Determine whether the scatter plot below could best be modeled by a linear model, a quadratic model, an exponential model, a logarithmic model, or a logistic model. Determine whether the scatter plot below could best be modeled by a linear model, a quadratic model, an exponential model, a logarithmic model, or a logistic model.

(Multiple Choice)
4.8/5
(37)

Solve the logarithmic equation below algebraically. ln(x6)=ln(x+6)ln(x4)\ln ( x - 6 ) = \ln ( x + 6 ) - \ln ( x - 4 )

(Multiple Choice)
4.9/5
(35)

Solve the logarithmic equation below algebraically. ln(x+3)=ln(x+1)ln(x+7)\ln ( x + 3 ) = \ln ( x + 1 ) - \ln ( x + 7 )

(Multiple Choice)
4.8/5
(25)

Solve lnx2ln3=0\ln x ^ { 2 } - \ln 3 = 0 for xx .

(Multiple Choice)
4.8/5
(29)

Solve the logarithmic equation below algebraically. Round your result to three decimal places. lnx+6=2\ln \sqrt { x + 6 } = 2

(Multiple Choice)
4.9/5
(37)

Evaluate the function f(x)=14lnx at x=14.67f ( x ) = \frac { 1 } { 4 } \ln x \text { at } x = 14.67 . Round to 3 decimal places. (You may use your calculator.)

(Multiple Choice)
4.9/5
(37)

Evaluate the logarithm log1/30.211\log _ { 1 / 3 } 0.211 using the change of base formula. Round to 3 decimal places.

(Multiple Choice)
4.9/5
(34)

Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume all variables are positive.) log4y2\log _ { 4 } \frac { y } { 2 }

(Multiple Choice)
4.9/5
(33)

Simplify the expression below. 1+elnx61 + e ^ { \ln x ^ { 6 } }

(Multiple Choice)
4.7/5
(39)

Solve the equation below for x. log557=x\log _ { 5 } 5 ^ { 7 } = x

(Multiple Choice)
4.8/5
(37)

Solve the exponential equation below algebraically. Round your result to three decimal places. 250[(1+0.03)x0.03]=160,000250 \left[ \frac { ( 1 + 0.03 ) ^ { x } } { 0.03 } \right] = 160,000

(Multiple Choice)
4.8/5
(25)

Solve (14)x=64\left( \frac { 1 } { 4 } \right) ^ { x } = 64 for x.

(Multiple Choice)
4.9/5
(38)

Condense the expression below to the logarithm of a single quantity. 32log7(z+5)\frac { 3 } { 2 } \log _ { 7 } ( z + 5 )

(Multiple Choice)
4.7/5
(40)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)