Exam 7: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x, y) = 2y32 y ^ { 3 } + 4 x4x ^ { 4 } + 2xy. Find fy\frac { \partial f } { \partial y } . Enter just a polynomial in y plus or minus a polynomial in x both in standard form (no label, no parentheses).

(Short Answer)
4.9/5
(42)

Let f(x, y) = ( x2x ^ { 2 } y3y ^ { 3 } + x3x ^ { 3 } 555 ^ { 5 } . Find fy\frac { \partial f } { \partial y } . Is 5(x3+y3x2)4(3y2x2)5 \left( x ^ { 3 } + y ^ { 3 } x ^ { 2 } \right) ^ { 4 } \left( 3 y ^ { 2 } x ^ { 2 } \right) the correct answer?

(True/False)
4.8/5
(44)

Determine the minimum value of f(x, y) = x2x ^ { 2 } - xy + 2 y2y ^ { 2 } + 4 subject to the constraint xy1=0x - y - 1 = 0 Enter your answer exactly as just a, b where a is the minimum and b is the Lagrange multiplier, using integers or reduced fractions of form cd\frac { \mathrm { c } } { \mathrm { d } } (no words or units).

(Short Answer)
4.8/5
(30)

Which of the following pairs of values (x, y) maximizes the function f(x,y)=x+3yf ( x , y ) = x + 3 y subject to the constraint x2+9y2=72x ^ { 2 } + 9 y ^ { 2 } = 72 assuming x and y are positive? (I) (-6, -2)  Which of the following pairs of values (x, y) maximizes the function  f ( x , y ) = x + 3 y  subject to the constraint  x ^ { 2 } + 9 y ^ { 2 } = 72  assuming x and y are positive?  (I) (-6, -2)    (II)  \left( 8 , \sqrt { \frac { 8 } { 9 } } \right)     III) (2, -6)    (IV) (6, 2) (II) (8,89)\left( 8 , \sqrt { \frac { 8 } { 9 } } \right)  Which of the following pairs of values (x, y) maximizes the function  f ( x , y ) = x + 3 y  subject to the constraint  x ^ { 2 } + 9 y ^ { 2 } = 72  assuming x and y are positive?  (I) (-6, -2)    (II)  \left( 8 , \sqrt { \frac { 8 } { 9 } } \right)     III) (2, -6)    (IV) (6, 2) III) (2, -6)  Which of the following pairs of values (x, y) maximizes the function  f ( x , y ) = x + 3 y  subject to the constraint  x ^ { 2 } + 9 y ^ { 2 } = 72  assuming x and y are positive?  (I) (-6, -2)    (II)  \left( 8 , \sqrt { \frac { 8 } { 9 } } \right)     III) (2, -6)    (IV) (6, 2) (IV) (6, 2)

(Multiple Choice)
5.0/5
(40)

Find all points (x, y) where f(x, y) = x2x ^ { 2 } + xy + y2y ^ { 2 } - x - y + 2 has a possible relative maximum or minimum. Enter your answer exactly as just (a, b) where a, b are reduced fractions of form cd\frac { \mathrm { c } } { \mathrm { d } } or integers.

(Short Answer)
4.8/5
(28)

Let g(x, y) = 9 y2y ^ { 2 } - 2xy. Compute g(-7, -3).

(Multiple Choice)
4.8/5
(42)

Let f (x, y, z) = xyx+z\frac { x y } { x + z } . Compute f(1, -1, -2). Enter just an integer.

(Short Answer)
4.8/5
(38)

Let f(x, y) = 8x + 9y - 6. Compute f(-6, -5).

(Multiple Choice)
4.9/5
(44)

Find all points (x, y) where f(x,y)=x312y+y2f ( x , y ) = x ^ { 3 } - 12 y + y ^ { 2 } has a possible relative maximum or minimum. Use the second-derivative test to determine, if possible, the nature of f(x, y) at each of these points.

(Multiple Choice)
4.8/5
(29)

Let R be the rectangle consisting of all points (x, y) such that 0 ≤ x ≤ 1, 0 ≤ y≤ 2. Calculate R(exy)dxdy\iint _ { R } \left( e ^ { x - y } \right) d x d y Enter your answer exactly in the form (e - a)(1 - eb\mathrm { e } ^ { \mathrm { b } } ).

(Short Answer)
4.8/5
(38)

Let f(x, y) = 3 x1/4x ^ { 1 / 4 } y3/4y ^ { 3 / 4 } . Compute f(4a, 4b). Enter your answer as c ana ^ { n } bm\mathrm { b^m } .

(Short Answer)
4.8/5
(34)

Let R be the rectangle consisting of all points (x, y) such that 0 ≤ x ≤ 3, 0 ≤ y ≤ 1. Calculate R4x2y2\iint _ { R } 4 x ^ { 2 } y ^ { 2 } dy dx.

(Multiple Choice)
4.8/5
(33)

Let f(x, y, z) = xyz(1 +  eyz \text { eyz } ). Find fz\frac { \partial f } { \partial z } .

(Multiple Choice)
4.9/5
(42)

Let f(x, y) = ( x2x ^ { 2 } + x) eyxe y - x . Find fx\frac { \partial f } { \partial x } . Enter your answer as just (P(x)) eyxe y - x where P is a polynomial in x in standard form.

(Short Answer)
4.8/5
(24)

Calculate the iterated integral 01(0x(x2y7)dy)\int _ { 0 } ^ { 1 } \left( \int _ { 0 } ^ { \sqrt { x } } ( x - 2 y - 7 ) d y \right) dx. Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(22)

Find all points (x, y) where f(x,y)=x3y23x+y+5f ( x , y ) = x ^ { 3 } - y ^ { 2 } - 3 x + y + 5 has a possible relative maximum or minimum. Enter your answer exactly as just (a, b), (c, d) with a > c and where a, b, c, d are either integers or reduced fractions of form ef\frac { e } { f } .

(Short Answer)
4.9/5
(35)

Let f(x, y) = 3 x2x ^ { 2 } + 2xy. Find fx\frac { \partial f } { \partial x } . Enter your answer exactly as just a polynomial in x plus or minus a polynomial in y both in standard form (do not label, no parentheses).

(Short Answer)
5.0/5
(40)

Let f(x, y) = 4 y2y ^ { 2 } - 2 x3x ^ { 3 } + 5 xy2x y ^ { 2 } . Find fx\frac { \partial f } { \partial x } . Enter just a polynomial in x plus or minus a polynomial in y both in standard form (do not label, no parentheses).

(Short Answer)
4.8/5
(44)

Let R be the rectangle consisting of all points (x, y) such that 0 ≤ x ≤ 3, 0 ≤ y ≤ 4. Calculate Rxydydx\iint _ { R } x y d y d x Enter just an integer.

(Short Answer)
4.9/5
(43)

Let f(x, y) = exye ^ { x - y } . Find 2fxy\frac { \partial ^ { 2 } \mathrm { f } } { \partial \mathrm { x } \partial \mathrm { y } } . Is exye ^ { x - y } the correct answer?

(True/False)
4.8/5
(33)
Showing 81 - 100 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)