Exam 7: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine the maximum value of f(x, y) = 4 - x2x ^ { 2 } - y2y ^ { 2 } subject to the constraint y=3x4y = 3 x - 4 . Enter your answer as exactly just a, b where a is the maximum and b is the Lagrange multiplier as either integers or reduced fractions of form cd\frac { \mathrm { c } } { \mathrm { d } } (no words or labels).

(Short Answer)
4.8/5
(35)

Let f(x, y) = ln(y + 2) + e2xye ^ { 2 x y } . Compute f(0, -1).

(Multiple Choice)
4.9/5
(33)

A tennis racket manufacturer produces two types of rackets, standard and competition. The weekly revenue function, in dollars, for x standard rackets and y competition rackets is given by R(x, y) = 54x + 2xy + 398y - 2 x2x ^ { 2 } - 9 y2y ^ { 2 } i) How many of each type of racket must be produced each week to maximize revenue? Ii) What is the maximum weekly revenue?

(Multiple Choice)
4.9/5
(26)

What is the least squares error E for the points (1, -3), (-2, 5), and (0, 10) and the line y=Ax+B?y = A x + B ?

(Multiple Choice)
4.9/5
(36)

A certain manufacturer can produce f(x, y) = 10(6 x3x ^ { 3 } + y2y ^ { 2 } ) units of goods by utilizing x units of labor and y units of capital. What is the marginal productivity of labor when x=10x = 10 and y=20?\mathrm { y } = 20 ?

(Multiple Choice)
4.9/5
(36)

Suppose that a company can produce P(x, y) = 50 (x3+y3)10\sqrt { \frac { \left( x ^ { 3 } + y ^ { 3 } \right) } { 10 } } items using x units of labor and y units of capital. What is the productivity of capital when x = 10 and y=20y = 20 ?

(Multiple Choice)
4.8/5
(44)

Find the pairs (x, y) that give the extreme values of 2x + 10y, subject to the constraint 4x2+5y2=84004 x ^ { 2 } + 5 y ^ { 2 } = 8400 using the method of Lagrange multipliers. Enter your answer as exactly just (a, b), (c, d) where a > c (no words).

(Short Answer)
4.8/5
(28)

Let f(x, y) = 4x24 x ^ { 2 } + 2 y2y ^ { 2 } + 3xy. Find fy\frac { \partial f } { \partial y } . Enter just a polynomial in y plus or minus a polynomial in x both in standard form (no label, no parentheses).

(Short Answer)
5.0/5
(44)

Let f(x, y) = x2x ^ { 2 } + y. Find fy\frac { \partial f } { \partial y } . Enter just an integer.

(Short Answer)
4.8/5
(29)

Let H(x, y) = 3xyx2y\frac { 3 x y } { x ^ { 2 } - y } . Find 2Hy2\frac { \partial ^ { 2 } \mathrm { H } } { \partial \mathrm { y } ^ { 2 } } .

(Multiple Choice)
4.9/5
(28)

Calculate the iterated integral 01x2x(x1)dydx\int _ { 0 } ^ { 1 } \int _ { x ^ { 2 } } ^ { x } ( x - 1 ) d y d x

(Multiple Choice)
4.8/5
(31)

Let f(x, y, z) = ln( xy2x y ^ { 2 } z3z ^ { 3 } ). Find fz\frac { \partial f } { \partial z } . Enter your answer in the unlabeled form aza z

(Short Answer)
4.8/5
(28)

Calculate the iterated integral 02(0x(x+2y)dy)\int _ { 0 } ^ { 2 } \left( \int _ { 0 } ^ { x } ( x + 2 y ) d y \right) dx. Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(31)

Let Q(x, y) = x2x ^ { 2 } y + y3y ^ { 3 } x4x ^ { 4 } . The point (1, 0) is

(Multiple Choice)
4.8/5
(31)

Calculate the iterated integral 01(01(x3+y2+xy)dy)\int _ { 0 } ^ { 1 } \left( \int _ { 0 } ^ { 1 } \left( x ^ { 3 } + y ^ { 2 } + x y \right) d y \right) dx. Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(31)

Let f(x, y, z) = xyz. Find the point(s) where f(x, y, z) may have a possible relative maximum or minimum, subject to the constraint x + 6y + 3z = 36 and where x > 0, y > 0, z > 0. Use the method of Lagrange multipliers. Enter your answer as just (a, b, c) where a, b, c are all integers.

(Short Answer)
4.9/5
(32)

Let f(x, y) = x2x ^ { 2 } + 2xy + eye ^ { y } . Find fy\frac { \partial f } { \partial y } . Enter just a polynomial in x plus or minus a polynomial in eye ^ { y } both in standard form (do not label, no parentheses).

(Short Answer)
4.9/5
(34)

Let f(x, y) = ln(x + 2y). Find 2fxy\frac { \partial ^ { 2 } \mathrm { f } } { \partial \mathrm { x } \partial \mathrm { y } } . Is (x+2y)2- ( x + 2 y ) ^ { 2 } the correct answer?

(True/False)
4.9/5
(31)

Find all points (x, y) where f(x, y) = x2x ^ { 2 } - 2 y2y ^ { 2 } + 4x - 6y + 8 has a possible relative maximum or minimum. Enter your answer as just (a, b) where a, b are either integers or reduced fractions of form cd\frac { \mathrm { c } } { \mathrm { d } } .

(Short Answer)
4.8/5
(40)

Let f(x, y) = (x+y)2( x + y ) ^ { 2 } - (x+y)3( x + y ) ^ { 3 } . Find 2fxy\frac { \partial ^ { 2 } \mathrm { f } } { \partial \mathrm { x } \partial \mathrm { y } } . Is 6(x+y)+2- 6 ( x + y ) + 2 the correct answer?

(True/False)
4.8/5
(32)
Showing 41 - 60 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)