Exam 7: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let g(x, t, z) = 1t\frac { 1 } { t } (x - z2z ^ { 2 } t). Find 2 gzt\frac { \partial ^ { 2 } \mathrm {~g} } { \partial \mathrm { z } \partial \mathrm { t } } .

(Multiple Choice)
4.9/5
(36)

The table below gives the height and weight of four randomly selected University undergraduate women. What is the least squares error E for these data points? height () 150 155 165 170 weight () 60 55 70 62

(Multiple Choice)
4.8/5
(27)

Use partial derivatives to obtain the formula for the best least-squares fit to the data points (0, 3), (2, 5), (4,5).( 4,5 ) . Enter your answer in standard point-intercept form with any fractions reduced of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(36)

Let R be the rectangle consisting of all points (x, y) such that 2 ≤ x ≤ 3, 0 ≤ y ≤ 2. Calculate R(x+y)dydx\iint _ { R } ( x + y ) d y d x Enter just an integer.

(Short Answer)
4.7/5
(39)

Calculate the iterated integral 1224xydydx\int _ { 1 } ^ { 2 } \int _ { 2 } ^ { 4 } \frac { x } { y } d y d x

(Multiple Choice)
4.9/5
(32)

Let G(x, r, t) = 2 x2x ^ { 2 } t + 13\frac { 1 } { 3 } t2t ^ { 2 } - r3r ^ { 3 } xt\sqrt { x t } . Find Gx\frac { \partial G } { \partial x } .

(Multiple Choice)
4.9/5
(40)

 Let f(x,y)=x2y21\text { Let } f ( x , y ) = x ^ { 2 } y ^ { 2 } - 1 Compute f(1,1+k)f(1,1)k\frac { f ( - 1,1 + k ) - f ( - 1,1 ) } { k } for k ≠ 0. Enter your answer as a polynomial in k in standard form.

(Short Answer)
4.9/5
(40)

Use the method of your choice to obtain the formula for the least-squares line to fit the data (0, 0), (1, 2), (2,3).( 2,3 ) . Enter your answer in standard point-intercept form with any fractions reduced of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(27)

Calculate the iterated integral 12(2132x3y3dy)\int _ { - 1 } ^ { 2 } \left( \int _ { - 2 } ^ { 1 } 32 x ^ { 3 } y ^ { 3 } d y \right) dx.

(Multiple Choice)
4.7/5
(31)

A petroleum company has a Cobb-Douglas production function f(x,y)=70x2/5y3/5f ( x , y ) = 70 x ^ { 2 / 5 } y ^ { 3 / 5 } where x is the utilization of labor and y is the utilization of capital. Determine the number of units of petroleum produced when 1200 units of labor and 2100 units of capital are used.

(Multiple Choice)
4.9/5
(39)

Let f(x, y) = yexy e ^ { x } + x y2y ^ { 2 } . At which point does f(x, y) have a possible maximum or minimum value?

(Multiple Choice)
4.8/5
(35)

Maximize the function f(x, y) = exye ^ { x y } subject to the constraint x2+y2=18,x,y>0x ^ { 2 } + y ^ { 2 } = 18 , x , y > 0 Enter your answer as just eae ^ { a } .

(Short Answer)
4.7/5
(26)

Let f(x, y) = x3x ^ { 3 } y + ex+3ye ^ { x + 3 y } . Compute 2fxy\frac { \partial ^ { 2 } \mathrm { f } } { \partial \mathrm { x } \partial \mathrm { y } } (1, 0).

(Multiple Choice)
4.7/5
(33)

Let f(x, y) = x e2ye ^ { 2 } y + y e2x\mathrm { e } ^ { 2 x } . Compute 2fx2\frac { \partial ^ { 2 } \mathrm { f } } { \partial \mathrm { x } ^ { 2 } } . Enter your answer as just an unlabeled polynomial in e2x\mathrm { e } ^ { 2 x } in standard form.

(Short Answer)
4.9/5
(39)

Let f(x, y, z) = y3y ^ { 3 } z - x2x ^ { 2 } y + xyz\sqrt { x y z } - 1x\frac { 1 } { x } . Find fy\frac { \partial f } { \partial y } .

(Multiple Choice)
4.9/5
(37)

Assume that a manufacturer has productivity function P(l, c) where l and c are the amounts of labor and capital utilized. Which of the following indicates that a slight increase in the amount of labor utilized will result in an increase in productivity of 3 units.

(Multiple Choice)
5.0/5
(37)

Find all points (x, y) where f(x, y) = 3xy - x2x ^ { 2 } - y2y ^ { 2 } - 2x - y + 3 has a possible relative maximum or minimum. Enter your answer as just (a, b) where a, b are reduced fractions of form cd\frac { \mathrm { c } } { \mathrm { d } } .

(Short Answer)
4.8/5
(34)

Calculate the iterated integral 0ln2(12xy+yexydx)\int _ { 0 } ^ { \ln 2 } \left( \int _ { 1 } ^ { 2 } x y + y e ^ { x y } d x \right) dy.

(Multiple Choice)
4.8/5
(37)

Suppose that a retailer sells f(p, a) units of an item, where p is the price per unit of the item and a is the amount of money spent on advertising that item. Which of the following indicates that as the amount spent on advertising is decreased, demand for the item also decreases?

(Multiple Choice)
4.9/5
(36)

Let P(x, y, z) = xy + 2 x3x ^ { 3 } y21\sqrt { y ^ { 2 } - 1 } . Compute Pz\frac { \partial P } { \partial z } (2, 1, 3).

(Multiple Choice)
4.8/5
(39)
Showing 61 - 80 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)