Exam 8: Polar Coordinates and Parametric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Test the polar equation for symmetry. r2=36sin2θr ^ { 2 } = 36 \sin 2 \theta

(Short Answer)
4.8/5
(31)

Find (22i)16( \sqrt { 2 } - \sqrt { 2 } i ) ^ { 16 } using DeMoivre's Theorem.

(Essay)
4.9/5
(40)

Find the polar coordinates of the point with rectangular coordinates (2,2/3)( - \sqrt { 2 } , - \sqrt { 2 } / \sqrt { 3 } ) .

(Essay)
4.8/5
(30)

Sketch the curve represented by x=tsintx = t \sin t , y=costy = \cos t .

(Essay)
4.8/5
(28)

Sketch the curve represented by x=5sint+1x = 5 \sin t + 1 , y=4cost+1y = 4 \cos t + 1 and find a rectangular-coordinate equation for the curve.

(Essay)
4.8/5
(38)

Test the polar equation for symmetry. r=4+8cosθr = 4 + 8 \cos \theta

(Essay)
5.0/5
(30)

Sketch the graph of the polar equation. r=4θr = 4 \theta , θ>0\theta > 0

(Essay)
4.7/5
(39)

Sketch the curve with polar equation r=sinθtanθr = \sin \theta \tan \theta .

(Essay)
4.8/5
(28)

Plot the point with polar coordinates (1,π/4)( 1 , \pi / 4 ) and give two other polar coordinate representations, one with r<0r < 0 , and the other with r>0r > 0 .

(Essay)
4.7/5
(31)

Write 3+4i- 3 + 4 i in polar form, with θ\theta between 00 and 2π2 \pi .

(Essay)
4.8/5
(29)

Write the product z1z2z _ { 1 } z _ { 2 } and quotient z1/z2z _ { 1 } / z _ { 2 } , if z1=8(cos11π6+isin11π6)z _ { 1 } = 8 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right) and z2=23(cosn3+isinn3)z _ { 2 } = 2 \sqrt { 3 } \left( \cos \frac { n } { 3 } + i \sin \frac { n } { 3 } \right) in polar form.

(Essay)
4.9/5
(33)

Convert the equation to polar form. y=7y = 7

(Essay)
4.8/5
(33)

For the point with polar coordinates P(1,π/3)P ( 1 , \pi / 3 ) find two other polar coordinate representations of P with r<0.r < 0 .

(Essay)
4.9/5
(40)

Sketch the curve with polar equation r=4sin4θr = 4 \sin 4 \theta .

(Essay)
4.8/5
(37)

Convert the polar equation to rectangular coordinates. r/6=secθr / 6 = \sec \theta

(Essay)
4.8/5
(29)

Find the rectangular coordinates of the point with polar coordinates (0,π/27)( 0 , \pi / 27 ) .

(Essay)
4.7/5
(33)

Sketch the curve represented by x=3sintx = 3 \sin t , y=costy = \cos t , 0t2π0 \leq t \leq 2 \pi and find a rectangular-coordinate equation for the curve.

(Essay)
4.8/5
(36)

Sketch the curve represented by x=cos2tx = \cos ^ { 2 } t , y=cos6ty = \cos ^ { 6 } t and find a rectangular-coordinate equation for the curve.

(Essay)
4.7/5
(34)

Sketch the curve represented by x=1tx = 1 - t ,  Sketch the curve represented by  x = 1 - t  ,   and find a rectangular-coordinate equation for the curve. and find a rectangular-coordinate equation for the curve.

(Essay)
4.8/5
(34)

Convert the equation x+y=2x + y = 2 to polar form.

(Essay)
4.8/5
(38)
Showing 41 - 60 of 109
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)