Exam 8: Polar Coordinates and Parametric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (23,2)( - 2 \sqrt { 3 } , - 2 )

(Essay)
4.9/5
(35)

For the point with polar coordinates P(6,0)P ( - 6,0 ) find two other polar coordinate representations of P with r>0r > 0

(Essay)
4.8/5
(40)

Convert the polar equation to rectangular coordinates. r/3=cscθr / 3 = \csc \theta

(Essay)
4.9/5
(22)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta

(Short Answer)
4.8/5
(32)

Sketch a graph of the polar equation. r=3+2sinθr = \sqrt { 3 } + 2 \sin \theta

(Essay)
4.7/5
(33)

Convert the equation to polar form. x2y2=9x ^ { 2 } - y ^ { 2 } = 9

(Essay)
4.7/5
(37)

Find the rectangular coordinates for the point whose polar coordinates are given. (2,5π/3)( \sqrt { 2 } , - 5 \pi / 3 )

(Essay)
4.8/5
(34)

Find (232i)12( 2 \sqrt { 3 } - 2 i ) ^ { 12 } using DeMoivre's Theorem.

(Essay)
4.8/5
(30)

Use a graphing device to sketch the curve represented by x=2sint,y=cos2tx = 2 \sin t , y = \cos 2 t .

(Essay)
4.9/5
(40)
Showing 101 - 109 of 109
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)