Exam 8: Polar Coordinates and Parametric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write 333i3 - 3 \sqrt { 3 } i in polar form, with θ\theta between 00 and 2π2 \pi .

(Essay)
4.8/5
(41)

Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

(Essay)
4.8/5
(39)

Write 25i- 25 i in polar form with argument θ\theta between 00 and 2π2 \pi .

(Essay)
4.9/5
(31)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,5)( 0 , - \sqrt { 5 } )

(Essay)
4.7/5
(36)

Find the rectangular coordinates of the point with polar coordinates (3,π/6)( \sqrt { 3 } , \pi / 6 ) .

(Essay)
4.8/5
(29)

Convert the equation xy=1x y = 1 to polar form.

(Essay)
4.8/5
(45)

Sketch the curve represented by x=t1x = t - 1 , y=t21y = \left| t ^ { 2 } - 1 \right| and find a rectangular-coordinate equation for the curve.

(Essay)
4.9/5
(36)

Find parametric equations for the line passing through the points (3,5)( 3,5 ) and (5,7)( - 5,7 ) .

(Essay)
5.0/5
(37)

Solve z410,000=0z ^ { 4 } - 10,000 = 0 .

(Essay)
4.8/5
(32)

Find parametric equations for the line of slope 45- \frac { 4 } { 5 } passing through the point (7,1)( 7 , - 1 ) .

(Essay)
5.0/5
(41)

Convert the polar equation to rectangular coordinates. r+cosθ=4r+ \cos \theta = 4

(Essay)
4.9/5
(39)

Use a graphing device to draw the curve represented by  Use a graphing device to draw the curve represented by   ,   ,  0 \leq t \leq 2 \pi  . ,  Use a graphing device to draw the curve represented by   ,   ,  0 \leq t \leq 2 \pi  . , 0t2π0 \leq t \leq 2 \pi .

(Essay)
4.8/5
(34)

Find parametric equations for the parabola y=x23y = x ^ { 2 } - 3 .

(Essay)
4.8/5
(37)

Sketch the graph of the polar equation. θ=π/4\theta = \pi / 4

(Essay)
4.9/5
(36)

Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

(Essay)
4.7/5
(30)

Sketch the curve represented by x=sectx = \sec t , y=cotty = \cot t and find a rectangular-coordinate equation for the curve.

(Essay)
4.9/5
(36)

Write 1i- 1 - i in polar form, with θ\theta between 00 and 2π2 \pi .

(Essay)
4.7/5
(41)

Sketch the graph of the polar equation. r=cosθr = \cos \theta

(Essay)
4.8/5
(46)

Convert the equation to polar form. x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

(Essay)
4.7/5
(35)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=9cos2θr ^ { 2 } = 9 \cos 2 \theta

(Short Answer)
4.8/5
(46)
Showing 61 - 80 of 109
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)