Solved

The Position Vector of a Particle Is R(t) t=π4t = \frac { \pi } { 4 }

Question 50

Multiple Choice

The position vector of a particle is r(t) . Find the requested vector.
-The acceleration at t=π4t = \frac { \pi } { 4 } for r(t) =(2sin2t) i(2cos2t) j+(5csc2t) kr ( t ) = ( 2 \sin 2 t ) \mathbf { i } - ( 2 \cos 2 t ) \mathbf { j } + ( 5 \csc 2 t ) \mathbf { k }


A) a(π4) =8i+20ka \left( \frac { \pi } { 4 } \right) = 8 i + 20 k
B) a(π4) =8i+20ka \left( \frac { \pi } { 4 } \right) = - 8 i + 20 k
C) (π4) =8i20k\left( \frac { \pi } { 4 } \right) = - 8 \mathbf { i } - 20 \mathbf { k }
D) a(π4) =8j+20ka \left( \frac { \pi } { 4 } \right) = 8 \mathbf { j } + 20 \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions