Solved

Solve the Initial Value Problem drdt=i+(4t310t)j+1t+2k\frac { d \mathbf { r } } { d t } = \mathbf { i } + \left( 4 t ^ { 3 } - 10 t \right) j + \frac { 1 } { t + 2 } \mathbf { k }

Question 52

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=i+(4t310t) j+1t+2k\frac { d \mathbf { r } } { d t } = \mathbf { i } + \left( 4 t ^ { 3 } - 10 t \right) j + \frac { 1 } { t + 2 } \mathbf { k }
Initial Condition: r(0) =2j+(ln2) k\mathbf { r } ( 0 ) = 2 \mathrm { j } + ( \ln 2 ) \mathbf { k }


A) r(t) =ti+(t24(4t220) +1) j+(ln2) kr ( t ) = t i + \left( \frac { t ^ { 2 } } { 4 } \left( 4 t ^ { 2 } - 20 \right) + 1 \right) j + ( \ln 2 ) \mathbf { k }
B) r(t) =ti+(t22(4t220) +2) j+(lnt) kr ( t ) = t i + \left( \frac { t ^ { 2 } } { 2 } \left( 4 t ^ { 2 } - 20 \right) + 2 \right) j + ( \ln t ) k
C) r(t) =i+(t24(4t220) +2) j+(ln2) k\mathbf { r } ( \mathrm { t } ) = \mathrm { i } + \left( \frac { \mathrm { t } ^ { 2 } } { 4 } \left( 4 \mathrm { t } ^ { 2 } - 20 \right) + 2 \right) \mathrm { j } + ( \ln 2 ) \mathbf { k }
D) r(t) =ti+(t24(4t220) +2) j+ln(t+2) kr ( t ) = t i + \left( \frac { t ^ { 2 } } { 4 } \left( 4 t ^ { 2 } - 20 \right) + 2 \right) j + \ln ( t + 2 ) k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions