Solved

Solve the Problem B) C) D)

Question 51

Multiple Choice

Solve the problem.
-At time t = 0 a particle is located at the point (4, -3, 2) . It travels in a straight line to the point (6, -2, 1) , has speed 2 at (4, -3, 2) and constant acceleration 6i - j - k. Find an equation for the position vector r(t) of the particle at time t.


A) r(t) =(3t2+829t+4) i(12t2+629t+3) j(12t2429t2) kr ( t ) = \left( 3 t ^ { 2 } + \frac { 8 } { \sqrt { 29 } } t + 4 \right) i - \left( \frac { 1 } { 2 } t ^ { 2 } + \frac { 6 } { \sqrt { 29 } } t + 3 \right) j - \left( \frac { 1 } { 2 } t ^ { 2 } - \frac { 4 } { \sqrt { 29 } } t - 2 \right) k
B) r(t) =(3t2+26t+4) i(12t216t+3) j(12t2+16t2) kr ( t ) = \left( 3 t ^ { 2 } + \frac { 2 } { \sqrt { 6 } } t + 4 \right) i - \left( \frac { 1 } { 2 } t ^ { 2 } - \frac { 1 } { \sqrt { 6 } } t + 3 \right) j - \left( \frac { 1 } { 2 } t ^ { 2 } + \frac { 1 } { \sqrt { 6 } } t - 2 \right) k
C) r(t) =(3t2+46t+4) i(12t226t+3) j(12t2+26t2) k\mathbf { r } ( \mathrm { t } ) = \left( 3 \mathrm { t } ^ { 2 } + \frac { 4 } { \sqrt { 6 } } \mathrm { t } + 4 \right) \mathrm { i } - \left( \frac { 1 } { 2 } \mathrm { t } ^ { 2 } - \frac { 2 } { \sqrt { 6 } } \mathrm { t } + 3 \right) \mathrm { j } - \left( \frac { 1 } { 2 } \mathrm { t } ^ { 2 } + \frac { 2 } { \sqrt { 6 } } \mathrm { t } - 2 \right) \mathrm { k }
D) r(t) ={6t2+46t+4) i(t226t+3) j(t2+26t2) k\mathbf { r } ( \mathrm { t } ) = \left\{ 6 \mathrm { t } ^ { 2 } + \frac { 4 } { \sqrt { 6 } } \mathrm { t } + 4 \right) \mathrm { i } - \left( \mathrm { t } ^ { 2 } - \frac { 2 } { \sqrt { 6 } } \mathrm { t } + 3 \right) \mathrm { j } - \left( \mathrm { t } ^ { 2 } + \frac { 2 } { \sqrt { 6 } } \mathrm { t } - 2 \right) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions