Solved

Find the Unit Tangent Vector to the Curve Given Below r(2)=5costi+4sintj,t=2π3\mathbf { r } ( 2 ) = 5 \cos t \mathbf { i } + 4 \sin t \mathbf { j } , t = \frac { 2 \pi } { 3 }

Question 4

Multiple Choice

Find the unit tangent vector to the curve given below at the specified point. r(2) =5costi+4sintj,t=2π3\mathbf { r } ( 2 ) = 5 \cos t \mathbf { i } + 4 \sin t \mathbf { j } , t = \frac { 2 \pi } { 3 }


A) T(2π3) =5391i491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 4 } { \sqrt { 91 } } \mathbf { j }
B) T(2π3) =5391i+491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } + \frac { 4 } { \sqrt { 91 } } \mathbf { j }
C) T(2π3) =4391i591j\mathbf { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 4 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 5 } { \sqrt { 91 } } \mathbf { j }
D) T(2π3) =5391i+491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } + \frac { 4 } { \sqrt { 91 } } \mathbf { j }
E) T(2π3) =5391i491j\mathrm { T } \left( \frac { 2 \pi } { 3 } \right) = - \frac { 5 \sqrt { 3 } } { \sqrt { 91 } } \mathbf { i } - \frac { 4 } { \sqrt { 91 } } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions