Solved

Graph the Hyperbola x2y22x+4y19=0x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0

Question 23

Multiple Choice

Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x2y22x+4y19=0x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0


A)  Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0  A)    center:  ( - 1 , - 2 )   ; vertices:  ( - 5 , - 2 )  , ( 3 , - 2 )   ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)    Center:  ( - 1 , - 2 )   ; Vertices:  ( - 1 , - 6 )  , ( - 1,2 )   ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )   ;   length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)    center:  ( 1,2 )   ; vertices:  ( - 3,2 )  , ( 5,2 )   ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . center: (1,2) ( - 1 , - 2 ) ; vertices: (5,2) ,(3,2) ( - 5 , - 2 ) , ( 3 , - 2 ) ;
Foci: (1±42,2) ( - 1 \pm 4 \sqrt { 2 } , - 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
B)
 Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0  A)    center:  ( - 1 , - 2 )   ; vertices:  ( - 5 , - 2 )  , ( 3 , - 2 )   ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)    Center:  ( - 1 , - 2 )   ; Vertices:  ( - 1 , - 6 )  , ( - 1,2 )   ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )   ;   length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)    center:  ( 1,2 )   ; vertices:  ( - 3,2 )  , ( 5,2 )   ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . Center: (1,2) ( - 1 , - 2 ) ;
Vertices: (1,6) ,(1,2) ( - 1 , - 6 ) , ( - 1,2 ) ;
Foci: (1,2±42) ( - 1 , - 2 \pm 4 \sqrt { 2 } ) ;
length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x3,y=x1y = - x - 3 , y = x - 1 .
C)  Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0  A)    center:  ( - 1 , - 2 )   ; vertices:  ( - 5 , - 2 )  , ( 3 , - 2 )   ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)    Center:  ( - 1 , - 2 )   ; Vertices:  ( - 1 , - 6 )  , ( - 1,2 )   ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )   ;   length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)    center:  ( 1,2 )   ; vertices:  ( - 3,2 )  , ( 5,2 )   ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . center: (1,2) ( 1,2 ) ; vertices: (1,2) ,(1,6) ( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42) ( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 4;
Eccentricity: 22 ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
D)  Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0  A)    center:  ( - 1 , - 2 )   ; vertices:  ( - 5 , - 2 )  , ( 3 , - 2 )   ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)    Center:  ( - 1 , - 2 )   ; Vertices:  ( - 1 , - 6 )  , ( - 1,2 )   ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )   ;   length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)    center:  ( 1,2 )   ; vertices:  ( - 3,2 )  , ( 5,2 )   ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . center: (1,2) ( 1,2 ) ; vertices: (1,2) ,(1,6) ( 1 , - 2 ) , ( 1,6 ) ;
Foci: (1,2±42) ( 1,2 \pm 4 \sqrt { 2 } ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .
E)  Graph the hyperbola. Specify the following: center, vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - y ^ { 2 } - 2 x + 4 y - 19 = 0  A)    center:  ( - 1 , - 2 )   ; vertices:  ( - 5 , - 2 )  , ( 3 , - 2 )   ; Foci:  ( - 1 \pm 4 \sqrt { 2 } , - 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . B)    Center:  ( - 1 , - 2 )   ; Vertices:  ( - 1 , - 6 )  , ( - 1,2 )   ; Foci:  ( - 1 , - 2 \pm 4 \sqrt { 2 } )   ;   length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x - 3 , y = x - 1  . C)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 4; Length of conjugate axis: 4; Eccentricity:  2  ; Asymptotes:  y = - x + 3 , y = x + 1  . D)    center:  ( 1,2 )   ; vertices:  ( 1 , - 2 )  , ( 1,6 )   ; Foci:  ( 1,2 \pm 4 \sqrt { 2 } )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . E)    center:  ( 1,2 )   ; vertices:  ( - 3,2 )  , ( 5,2 )   ; Foci:  ( 1 \pm 4 \sqrt { 2 } , 2 )   ; Length of transverse axis: 8; Length of conjugate axis: 8; Eccentricity:  \sqrt { 2 }  ; Asymptotes:  y = - x + 3 , y = x + 1  . center: (1,2) ( 1,2 ) ; vertices: (3,2) ,(5,2) ( - 3,2 ) , ( 5,2 ) ;
Foci: (1±42,2) ( 1 \pm 4 \sqrt { 2 } , 2 ) ;
Length of transverse axis: 8;
Length of conjugate axis: 8;
Eccentricity: 2\sqrt { 2 } ;
Asymptotes: y=x+3,y=x+1y = - x + 3 , y = x + 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions