Solved

Find sinθ\sin \theta And cosθ\cos \theta , Where θ\theta Is the (Acute) Angle of Rotation That Eliminates The

Question 24

Multiple Choice

Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 124x2+7xy+100y2=0124 x ^ { 2 } + 7 x y + 100 y ^ { 2 } = 0


A) sinθ=7226\sin \theta = \frac { 7 \sqrt { 2 } } { 26 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
B) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=17226\cos \theta = \frac { 17 \sqrt { 2 } } { 26 }
C) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
D) sinθ=17226\sin \theta = \frac { 17 \sqrt { 2 } } { 26 } cosθ=7226\cos \theta = \frac { 7 \sqrt { 2 } } { 26 }
E) sinθ=7210\sin \theta = \frac { 7 \sqrt { 2 } } { 10 } cosθ=210\cos \theta = \frac { \sqrt { 2 } } { 10 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions