Solved

Graph the Hyperbola x225y2=25x ^ { 2 } - 25 y ^ { 2 } = 25

Question 25

Multiple Choice

Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. x225y2=25x ^ { 2 } - 25 y ^ { 2 } = 25


A)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25  A)    vertices:  ( \pm 5,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)    vertices:  ( 0 , \pm 6 )   ; Foci:  ( 0 , \pm \sqrt { 37 } )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)     vertices:  ( 0 , \pm 5 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . vertices: (±5,0) ( \pm 5,0 ) ;
Foci: (±26,0) ( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .
B)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25  A)    vertices:  ( \pm 5,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)    vertices:  ( 0 , \pm 6 )   ; Foci:  ( 0 , \pm \sqrt { 37 } )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)     vertices:  ( 0 , \pm 5 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . vertices: (0,±6) ( 0 , \pm 6 ) ;
Foci: (0,±37) ( 0 , \pm \sqrt { 37 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±16xy = \pm \frac { 1 } { 6 } x .
C)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25  A)    vertices:  ( \pm 5,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)    vertices:  ( 0 , \pm 6 )   ; Foci:  ( 0 , \pm \sqrt { 37 } )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)     vertices:  ( 0 , \pm 5 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . vertices: (±1,0) ( \pm 1,0 ) ;
Foci: (±26,0) ( \pm \sqrt { 26 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±5xy = \pm 5 x .
D)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25  A)    vertices:  ( \pm 5,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)    vertices:  ( 0 , \pm 6 )   ; Foci:  ( 0 , \pm \sqrt { 37 } )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)     vertices:  ( 0 , \pm 5 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . vertices: (0,±5) ( 0 , \pm 5 ) ;
Foci: (0,±26) ( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 10;
Length of conjugate axis: 2;
Eccentricity: 265\frac { \sqrt { 26 } } { 5 }
Asymptotes: y=±5xy = \pm 5 x .
E)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  x ^ { 2 } - 25 y ^ { 2 } = 25  A)    vertices:  ( \pm 5,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm \frac { 1 } { 5 } x  . B)    vertices:  ( 0 , \pm 6 )   ; Foci:  ( 0 , \pm \sqrt { 37 } )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm \frac { 1 } { 6 } x  . C)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 26 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm 5 x  . D)     vertices:  ( 0 , \pm 5 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 10; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 26 } } { 5 }  Asymptotes:  y = \pm 5 x  . E)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 26 } )   ; Length of transverse axis: 2; Length of conjugate axis: 10; Eccentricity:  \sqrt { 26 }  ; Asymptotes:  y = \pm \frac { 1 } { 5 } x  . vertices: (0,±1) ( 0 , \pm 1 ) ;
Foci: (0,±26) ( 0 , \pm \sqrt { 26 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 10;
Eccentricity: 26\sqrt { 26 } ;
Asymptotes: y=±15xy = \pm \frac { 1 } { 5 } x .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions