Solved

The Fourier Cosine Integral of a Function F Defined On [

Question 15

Multiple Choice

The Fourier cosine integral of a function f defined on [0,][ 0 , \infty ] is


A) 20[0f(x) cos(αx) dx]cos(αx) dα/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
B) 0[0f(x) cos(αx) dx]cos(αx) dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
C) 20[0f(x) cos(αx) dx]cos(αx) dα2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha
D) 0[0f(x) cos(αx) dα]cos(αx) dx\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x
E) 20[0f(x) cos(αx) dα]cos(αx) dx/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x / \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions