Solved

Consider the Equation umut=0u _ { m } - u _ { t } = 0

Question 40

Multiple Choice

Consider the equation umut=0u _ { m } - u _ { t } = 0 with conditions u(0,t) =0,u=(L,t) =0,u(x,0) =f(x) u ( 0 , t ) = 0 , u = ( L , t ) = 0 , u ( x , 0 ) = f ( x ) . When separating variables with u(x,t) =X(x) T(t) u ( x , t ) = X ( x ) T ( t ) , the resulting problems for X,TX , T are


A) X+λX=0,X(0) =0,X(L) =0,Tt+λT=0,T(0) =f(0) X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( 0 )
B) X+λX=0,X(0) =0,X(L) =0,Tt+λT=0,T(0) =f(x) X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { t } + \lambda T = 0 , T ( 0 ) = f ( x )
C) XλX=0,X(0) =0,X(L) =0,T+λT=0X ^ { \prime \prime } - \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0
D) X+λX=0,X(0) =0,X(L) =0,TλT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } - \lambda T = 0
E) X+λX=0,X(0) =0,X(L) =0,T+λT=0X ^ { \prime \prime } + \lambda X = 0 , X ( 0 ) = 0 , X ( L ) = 0 , T ^ { \prime } + \lambda T = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions