Exam 15: Multiple Regression Model Building

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

If a group of independent variables are not significant individually but are significant as a group at a specified level of significance,this is most likely due to

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

D

TABLE 15-1 A certain type of rare gem serves as a status symbol for many of its owners.In theory,for low prices,the demand increases and it decreases as the price of the gem increases.However,experts hypothesize that when the gem is valued at very high prices,the demand increases with price due to the status owners believe they gain in obtaining the gem.Thus,the model proposed to best explain the demand for the gem by its price is the quadratic model: Y = β0 + β1X + β2X2 + ε where Y = demand (in thousands)and X = retail price per carat. This model was fit to data collected for a sample of 12 rare gems of this type.A portion of the computer analysis obtained from Microsoft Excel is shown below: TABLE 15-1 A certain type of rare gem serves as a status symbol for many of its owners.In theory,for low prices,the demand increases and it decreases as the price of the gem increases.However,experts hypothesize that when the gem is valued at very high prices,the demand increases with price due to the status owners believe they gain in obtaining the gem.Thus,the model proposed to best explain the demand for the gem by its price is the quadratic model: Y = β<sub>0</sub> + β<sub>1</sub>X + β<sub>2</sub>X<sup>2</sup> + ε where Y = demand (in thousands)and X = retail price per carat. This model was fit to data collected for a sample of 12 rare gems of this type.A portion of the computer analysis obtained from Microsoft Excel is shown below:   -Referring to Table 15-1,does there appear to be significant upward curvature in the response curve relating the demand (Y)and the price (X)at 10% level of significance? -Referring to Table 15-1,does there appear to be significant upward curvature in the response curve relating the demand (Y)and the price (X)at 10% level of significance?

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

C

In multiple regression,the ________ procedure permits variables to enter and leave the model at different stages of its development.

Free
(Short Answer)
4.7/5
(43)
Correct Answer:
Verified

stepwise regression

True or False: One of the consequences of collinearity in multiple regression is biased estimates on the slope coefficients.

(True/False)
4.9/5
(30)

TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no). The coefficient of multiple determination ( TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -True or False: Referring to Table 15-6,the model that includes X<sub>1</sub>,X<sub>5</sub> and X<sub>6 </sub>should be among the appropriate models using the Mallow's C<sub>p</sub> statistic. )for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below: TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -True or False: Referring to Table 15-6,the model that includes X<sub>1</sub>,X<sub>5</sub> and X<sub>6 </sub>should be among the appropriate models using the Mallow's C<sub>p</sub> statistic. -True or False: Referring to Table 15-6,the model that includes X1,X5 and X6 should be among the appropriate models using the Mallow's Cp statistic.

(True/False)
4.9/5
(32)

TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant.She took a sample of 14 people suffering from extreme muscle constriction.She gave each a vial containing a dose (X)of the drug and recorded the time to relief (Y)measured in seconds for each.She fit a curvilinear model to this data.The results obtained by Microsoft Excel follow TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant.She took a sample of 14 people suffering from extreme muscle constriction.She gave each a vial containing a dose (X)of the drug and recorded the time to relief (Y)measured in seconds for each.She fit a curvilinear model to this data.The results obtained by Microsoft Excel follow   -Referring to Table 15-3,suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose.The value of the test statistic is ________. -Referring to Table 15-3,suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose.The value of the test statistic is ________.

(Short Answer)
4.8/5
(40)

The Variance Inflationary Factor (VIF)measures the

(Multiple Choice)
4.8/5
(36)

TABLE 15-5 What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu.ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The coefficient of multiple determination ( TABLE 15-5 What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu.ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The coefficient of multiple determination (   )for the regression model using each of the 5 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.7461,0.5676,0.6764,0.8582,0.6632. -Referring to Table 15-5,what is the value of the variance inflationary factor of Sedan? )for the regression model using each of the 5 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.7461,0.5676,0.6764,0.8582,0.6632. -Referring to Table 15-5,what is the value of the variance inflationary factor of Sedan?

(Short Answer)
4.9/5
(36)

TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no). The coefficient of multiple determination ( TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -Referring to Table 15-6,what is the value of the Mallow's C<sub>p</sub> statistic for the model that includes X<sub>1</sub>,X<sub>2</sub>,X<sub>5</sub> and X<sub>6</sub>? )for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below: TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -Referring to Table 15-6,what is the value of the Mallow's C<sub>p</sub> statistic for the model that includes X<sub>1</sub>,X<sub>2</sub>,X<sub>5</sub> and X<sub>6</sub>? -Referring to Table 15-6,what is the value of the Mallow's Cp statistic for the model that includes X1,X2,X5 and X6?

(Short Answer)
4.8/5
(34)

TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X1 = % Attendance,X2 = Salaries and X3 = Spending. The coefficient of multiple determination ( TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below: TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? Following is the residual plot for % Attendance: TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? Following is the output of several multiple regression models: Model (I): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? Model (II): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? Model (III): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors? -Referring to Table 15-4,what are,respectively,the values of the variance inflationary factor of the 3 predictors?

(Short Answer)
4.9/5
(36)

TABLE 15-1 A certain type of rare gem serves as a status symbol for many of its owners.In theory,for low prices,the demand increases and it decreases as the price of the gem increases.However,experts hypothesize that when the gem is valued at very high prices,the demand increases with price due to the status owners believe they gain in obtaining the gem.Thus,the model proposed to best explain the demand for the gem by its price is the quadratic model: Y = β0 + β1X + β2X2 + ε where Y = demand (in thousands)and X = retail price per carat. This model was fit to data collected for a sample of 12 rare gems of this type.A portion of the computer analysis obtained from Microsoft Excel is shown below: TABLE 15-1 A certain type of rare gem serves as a status symbol for many of its owners.In theory,for low prices,the demand increases and it decreases as the price of the gem increases.However,experts hypothesize that when the gem is valued at very high prices,the demand increases with price due to the status owners believe they gain in obtaining the gem.Thus,the model proposed to best explain the demand for the gem by its price is the quadratic model: Y = β<sub>0</sub> + β<sub>1</sub>X + β<sub>2</sub>X<sup>2</sup> + ε where Y = demand (in thousands)and X = retail price per carat. This model was fit to data collected for a sample of 12 rare gems of this type.A portion of the computer analysis obtained from Microsoft Excel is shown below:   -Referring to Table 15-1,what is the correct interpretation of the coefficient of multiple determination? -Referring to Table 15-1,what is the correct interpretation of the coefficient of multiple determination?

(Multiple Choice)
4.9/5
(29)

The logarithm transformation can be used

(Multiple Choice)
4.9/5
(32)

True or False: The Variance Inflationary Factor (VIF)measures the correlation of the X variables with the Y variable.

(True/False)
4.8/5
(36)

Referring to Table 15-3,suppose the chemist decides to use a t test to determine if the linear term is significant.The p-value of the test is ________.

(Short Answer)
4.8/5
(34)

As a project for his business statistics class,a student examined the factors that determined parking meter rates throughout the campus area.Data were collected for the price per hour of parking,blocks to the quadrangle,and one of the three jurisdictions: on campus,in downtown and off campus,or outside of downtown and off campus.The population regression model hypothesized is Y = β0 + β1X1i + β2X2i + β3X3i + ε Where Y is the meter price X1 is the number of blocks to the quad X2 is a dummy variable that takes the value 1 if the meter is located in downtown and off campus and the value 0 otherwise X3 is a dummy variable that takes the value 1 if the meter is located outside of downtown and off campus,and the value 0 otherwise Suppose that whether the meter is located on campus is an important explanatory factor.Why should the variable that depicts this attribute not be included in the model?

(Multiple Choice)
4.8/5
(38)

TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no). The coefficient of multiple determination ( TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -True or False: Referring to Table 15-6,the variable X<sub>4 </sub>should be dropped to remove collinearity. )for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below: TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -True or False: Referring to Table 15-6,the variable X<sub>4 </sub>should be dropped to remove collinearity. -True or False: Referring to Table 15-6,the variable X4 should be dropped to remove collinearity.

(True/False)
4.8/5
(34)

TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no). The coefficient of multiple determination ( TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -Referring to Table 15-6,what is the value of the Mallow's C<sub>p</sub> statistic for the model that includes X<sub>1</sub>,X<sub>3</sub>,X<sub>5</sub> and X<sub>6</sub>? )for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below: TABLE 15-6 Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X<sub>1</sub>),the number of years of education received (X<sub>2</sub>),the number of years at the previous job (X<sub>3</sub>),a dummy variable for marital status (X<sub>4</sub>: 1 = married,0 = otherwise),a dummy variable for head of household (X<sub>5</sub>: 1 = yes,0 = no)and a dummy variable for management position (X<sub>6</sub>: 1 = yes,0 = no). The coefficient of multiple determination (   )for the regression model using each of the 6 variables X<sub>j</sub> as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993. The partial results from best-subset regression are given below:   -Referring to Table 15-6,what is the value of the Mallow's C<sub>p</sub> statistic for the model that includes X<sub>1</sub>,X<sub>3</sub>,X<sub>5</sub> and X<sub>6</sub>? -Referring to Table 15-6,what is the value of the Mallow's Cp statistic for the model that includes X1,X3,X5 and X6?

(Short Answer)
4.9/5
(33)

True or False: The stepwise regression approach takes into consideration all possible models.

(True/False)
4.8/5
(37)

Which of the following is used to find a "best" model?

(Multiple Choice)
4.8/5
(38)

TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X1 = % Attendance,X2 = Salaries and X3 = Spending. The coefficient of multiple determination ( TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below: TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is Following is the residual plot for % Attendance: TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is Following is the output of several multiple regression models: Model (I): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is Model (II): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is Model (III): TABLE 15-4 The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state. Let Y = % Passing as the dependent variable,X<sub>1</sub> = % Attendance,X<sub>2</sub> = Salaries and X<sub>3</sub> = Spending. The coefficient of multiple determination (   )of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743. The output from the best-subset regressions is given below:   Following is the residual plot for % Attendance:   Following is the output of several multiple regression models: Model (I):   Model (II):   Model (III):   -Referring to Table 15-4,the best model chosen using the adjusted R-square statistic is -Referring to Table 15-4,the "best" model chosen using the adjusted R-square statistic is

(Multiple Choice)
4.8/5
(41)
Showing 1 - 20 of 96
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)