Exam 15: Multiple Regression Model Building
Exam 1: Defining and Collecting Data189 Questions
Exam 3: Numerical Descriptive Measures184 Questions
Exam 4: Basic Probability156 Questions
Exam 5: Discrete Probability Distributions218 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions189 Questions
Exam 7: Sampling Distributions127 Questions
Exam 8: Confidence Interval Estimation196 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests170 Questions
Exam 10: Two-Sample Tests210 Questions
Exam 11: Analysis of Variance130 Questions
Exam 12: Chi-Square Tests and Nonparametric Tests175 Questions
Exam 13: Simple Linear Regression213 Questions
Exam 14: Introduction to Multiple Regression337 Questions
Exam 15: Multiple Regression Model Building96 Questions
Exam 16: Time-Series Forecasting165 Questions
Exam 17: A Roadmap for Analyzing Data303 Questions
Exam 18: Statistical Applications in Quality Management130 Questions
Exam 19: Decision Making126 Questions
Exam 20: Index Numbers44 Questions
Exam 21: Chi-Square Tests for the Variance or Standard Deviation11 Questions
Exam 22: Mcnemar Test for the Difference Between Two Proportions Related Samples15 Questions
Exam 25: The Analysis of Means Anom2 Questions
Exam 23: The Analysis of Proportions Anop3 Questions
Exam 24: The Randomized Block Design85 Questions
Exam 26: The Power of a Test41 Questions
Exam 27: Estimation and Sample Size Determination for Finite Populations13 Questions
Exam 28: Application of Confidence Interval Estimation in Auditing13 Questions
Exam 29: Sampling From Finite Populations20 Questions
Exam 30: The Normal Approximation to the Binomial Distribution27 Questions
Exam 31: Counting Rules14 Questions
Exam 32: Lets Get Started Big Things to Learn First33 Questions
Select questions type
TABLE 15-4
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Let Y = % Passing as the dependent variable,X1 = % Attendance,X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (
)of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743.
The output from the best-subset regressions is given below:
Following is the residual plot for % Attendance:
Following is the output of several multiple regression models:
Model (I):
Model (II):
Model (III):
-Referring to Table 15-4,the "best" model using a 5% level of significance among those chosen by the Cp statistic is






(Multiple Choice)
4.9/5
(50)
In multiple regression,the ________ procedure permits variables to enter and leave the model at different stages of its development.
(Multiple Choice)
4.8/5
(32)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,what is the value of the Mallow's Cp statistic for the model that includes all the six independent variables?


(Short Answer)
4.9/5
(30)
A regression diagnostic tool used to study the possible effects of collinearity is ________.
(Short Answer)
4.8/5
(37)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,what is the value of the variance inflationary factor of Married?


(Short Answer)
4.9/5
(35)
True or False: In stepwise regression,an independent variable is not allowed to be removed from the model once it has entered into the model.
(True/False)
4.9/5
(29)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-True or False: Referring to Table 15-6,the variable X6 should be dropped to remove collinearity.


(True/False)
4.8/5
(42)
TABLE 15-5
What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected:
Accel Time: Acceleration time in sec.
Cargo Vol: Cargo volume in cu.ft.
HP: Horsepower
MPG: Miles per gallon
SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0
Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0
The coefficient of multiple determination (
)for the regression model using each of the 5 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.7461,0.5676,0.6764,0.8582,0.6632.
-True or False: Referring to Table 15-5,there is reason to suspect collinearity between some pairs of predictors based on the values of the variance inflationary factor.

(True/False)
4.9/5
(27)
True or False: A high value of R2 significantly above 0 in multiple regression accompanied by insignificant t-values on all parameter estimates very often indicates a high correlation between independent variables in the model.
(True/False)
4.9/5
(31)
TABLE 15-4
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Let Y = % Passing as the dependent variable,X1 = % Attendance,X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (
)of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743.
The output from the best-subset regressions is given below:
Following is the residual plot for % Attendance:
Following is the output of several multiple regression models:
Model (I):
Model (II):
Model (III):
-Referring to Table 15-4,what is the value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?






(Short Answer)
4.9/5
(34)
True or False: Collinearity is present when there is a high degree of correlation between independent variables.
(True/False)
4.8/5
(26)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-True or False: Referring to Table 15-6,the model that includes X1,X3,X5 and X6 should be among the appropriate models using the Mallow's Cp statistic.


(True/False)
4.8/5
(31)
TABLE 15-4
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Let Y = % Passing as the dependent variable,X1 = % Attendance,X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (
)of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743.
The output from the best-subset regressions is given below:
Following is the residual plot for % Attendance:
Following is the output of several multiple regression models:
Model (I):
Model (II):
Model (III):
-True or False: Referring to Table 15-4,the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is not significant at a 5% level of significance.






(True/False)
4.9/5
(39)
True or False: Collinearity is present when there is a high degree of correlation between the dependent variable and any of the independent variables.
(True/False)
4.8/5
(43)
True or False: The goals of model building are to find a good model with the fewest independent variables that is easier to interpret and has lower probability of collinearity.
(True/False)
4.7/5
(37)
True or False: Referring to Table 15-3,suppose the chemist decides to use a t test to determine if the linear term is significant.Using a level of significance of 0.05,she would decide that the linear term is significant.
(True/False)
4.9/5
(33)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,what is the value of the variance inflationary factor of Manager?


(Short Answer)
4.9/5
(29)
Which of the following will not change a nonlinear model into a linear model?
(Multiple Choice)
4.9/5
(38)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X1),the number of years of education received (X2),the number of years at the previous job (X3),a dummy variable for marital status (X4: 1 = married,0 = otherwise),a dummy variable for head of household (X5: 1 = yes,0 = no)and a dummy variable for management position (X6: 1 = yes,0 = no).
The coefficient of multiple determination (
)for the regression model using each of the 6 variables Xj as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-True or False: Referring to Table 15-6,the model that includes X1,X2,X3,X5 and X6 should be selected using the adjusted r2 statistic.


(True/False)
4.9/5
(39)
The _______ (larger/smaller)the value of the Variance Inflationary Factor,the higher is the collinearity of the X variables.
(Short Answer)
4.8/5
(34)
Showing 21 - 40 of 96
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)