Exam 14: Introduction to Multiple Regression
Exam 1: Defining and Collecting Data189 Questions
Exam 3: Numerical Descriptive Measures184 Questions
Exam 4: Basic Probability156 Questions
Exam 5: Discrete Probability Distributions218 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions189 Questions
Exam 7: Sampling Distributions127 Questions
Exam 8: Confidence Interval Estimation196 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests170 Questions
Exam 10: Two-Sample Tests210 Questions
Exam 11: Analysis of Variance130 Questions
Exam 12: Chi-Square Tests and Nonparametric Tests175 Questions
Exam 13: Simple Linear Regression213 Questions
Exam 14: Introduction to Multiple Regression337 Questions
Exam 15: Multiple Regression Model Building96 Questions
Exam 16: Time-Series Forecasting165 Questions
Exam 17: A Roadmap for Analyzing Data303 Questions
Exam 18: Statistical Applications in Quality Management130 Questions
Exam 19: Decision Making126 Questions
Exam 20: Index Numbers44 Questions
Exam 21: Chi-Square Tests for the Variance or Standard Deviation11 Questions
Exam 22: Mcnemar Test for the Difference Between Two Proportions Related Samples15 Questions
Exam 25: The Analysis of Means Anom2 Questions
Exam 23: The Analysis of Proportions Anop3 Questions
Exam 24: The Randomized Block Design85 Questions
Exam 26: The Power of a Test41 Questions
Exam 27: Estimation and Sample Size Determination for Finite Populations13 Questions
Exam 28: Application of Confidence Interval Estimation in Auditing13 Questions
Exam 29: Sampling From Finite Populations20 Questions
Exam 30: The Normal Approximation to the Binomial Distribution27 Questions
Exam 31: Counting Rules14 Questions
Exam 32: Lets Get Started Big Things to Learn First33 Questions
Select questions type
TABLE 14-10
You worked as an intern at We Always Win Car Insurance Company last summer.You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual.You performed a regression analysis in EXCEL and obtained the following partial information:
-To explain personal consumption (CONS)measured in dollars,data is collected for
A regression analysis was performed with CONS as the dependent variable and CRDTLIM,APR,ADVT,and GENDER as the independent variables.The estimated model was
What is the correct interpretation for the estimated coefficient for GENDER?



(Multiple Choice)
4.8/5
(33)
TABLE 14-17
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age)and a dummy variable for management position (Manager: 1 = yes,0 = no).
The results of the regression analysis are given below:
-True or False: Referring to Table 14-17,the null hypothesis H0 : β1 = β2 = 0 implies that the number of weeks a worker is unemployed due to a layoff is not affected by any of the explanatory variables.

(True/False)
4.9/5
(41)
TABLE 14-4
A real estate builder wishes to determine how house size (House)is influenced by family income (Income)and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:
Also SSR (X1 ∣ X2)= 36400.6326 and SSR (X2 ∣ X1)= 3297.7917
-Referring to Table 14-4,________% of the variation in the house size can be explained by the variation in the family size while holding the family income constant.

(Short Answer)
4.7/5
(28)
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y)depends on his performance rating (X1)and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:
-The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

(Multiple Choice)
4.8/5
(41)
TABLE 14-4
A real estate builder wishes to determine how house size (House)is influenced by family income (Income)and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:
Also SSR (X1 ∣ X2)= 36400.6326 and SSR (X2 ∣ X1)= 3297.7917
-Referring to Table 14-4,which of the following values for the level of significance is the smallest for which at least one explanatory variable is significant individually?

(Multiple Choice)
4.9/5
(43)
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y)depends on his performance rating (X1)and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information:
-Referring to Table 14-2,suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

(Multiple Choice)
4.9/5
(30)
TABLE 14-18
A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT)at the university or college and whether the TOEFL criterion is at least 90 (Toefl90 = 1 if yes,0 otherwise).The dependent variable,Y,is school type (Type = 1 if private and 0 otherwise).
The PHStat output is given below:
-Referring to Table 14-18,which of the following is the correct interpretation for the SAT slope coefficient?

(Multiple Choice)
4.8/5
(31)
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y)depends on how many years that employee has been with the company (X1)and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:
-Referring to Table 14-1,for these data,what is the estimated coefficient for the variable representing years an employee has been with the company,b1?

(Multiple Choice)
4.7/5
(33)
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression.
-Referring to Table 14-5,the observed value of the F-statistic is given on the printout as 25.432.What are the degrees of freedom for this F-statistic?

(Multiple Choice)
4.7/5
(27)
TABLE 14-15
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),mean teacher salary in thousands of dollars (Salaries),and instructional spending per pupil in thousands of dollars (Spending)of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable,X1 = Salaries and X2 = Spending:
-True or False: Referring to Table 14-15,the null hypothesis H0 : β1 = β2 = 0 implies that percentage of students passing the proficiency test is not affected by either of the explanatory variables.

(True/False)
4.8/5
(37)
TABLE 14-15
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),mean teacher salary in thousands of dollars (Salaries),and instructional spending per pupil in thousands of dollars (Spending)of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable,X1 = Salaries and X2 = Spending:
-True or False: Referring to Table 14-15,there is sufficient evidence that instructional spending per pupil has an effect on percentage of students passing the proficiency test while holding constant the effect of mean teacher salary at a 5% level of significance.

(True/False)
5.0/5
(42)
TABLE 14-15
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),mean teacher salary in thousands of dollars (Salaries),and instructional spending per pupil in thousands of dollars (Spending)of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable,X1 = Salaries and X2 = Spending:
-True or False: Referring to Table 14-15,there is sufficient evidence that at least one of the explanatory variables is related to the percentage of students passing the proficiency test at a 5% level of significance.

(True/False)
4.9/5
(31)
TABLE 14-17
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age)and a dummy variable for management position (Manager: 1 = yes,0 = no).
The results of the regression analysis are given below:
-True or False: Referring to Table 14-17,we can conclude definitively that,holding constant the effect of the other independent variables,there is not a difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not at a 10% level of significance if all we have is the information of the 95% confidence interval estimate for the difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not.

(True/False)
4.8/5
(30)
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y)depends on how many years that employee has been with the company (X1)and how he/she scored on a business aptitude test (X2).A random sample of 8 employees provides the following:
-Referring to Table 14-1,for these data,what is the estimated coefficient for the variable representing scores on the aptitude test,b2?

(Multiple Choice)
4.8/5
(38)
TABLE 14-10
You worked as an intern at We Always Win Car Insurance Company last summer.You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual.You performed a regression analysis in EXCEL and obtained the following partial information:
-Referring to Table 14-10,the 99% confidence interval for the change in mean insurance premiums of a person who has become 1 year older (i.e.,the slope coefficient for AGE)is -1.4061 ± ________.

(Short Answer)
4.8/5
(26)
TABLE 14-8
A financial analyst wanted to examine the relationship between salary (in $1,000)and 2 variables: age
(X1 = Age)and experience in the field (X2 = Exper).He took a sample of 20 employees and obtained the following Microsoft Excel output:
Also,the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Table 14-8,the estimated change in the mean salary (in $1,000)for an employee who has one additional year of experience holding age constant is ________.

(Short Answer)
4.8/5
(37)
TABLE 14-16
What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:
Y (Accel Time): Acceleration time in sec.
X1 (Engine Size): c.c.
X2 (Sedan): 1 if the vehicle model is a sedan and 0 otherwise
The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.
The various residual plots are as shown below.
The coefficient of partial determinations
and
are 0.3301,and 0.0594,respectively.
The coefficient of determination for the regression model using each of the 2 independent variables as the dependent variable and the other independent variable as independent variables (
)are,respectively 0.0077,and 0.0077.
-Referring to Table 14-16,what is the correct interpretation for the estimated coefficient for X1?








(Multiple Choice)
4.8/5
(29)
TABLE 14-18
A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT)at the university or college and whether the TOEFL criterion is at least 90 (Toefl90 = 1 if yes,0 otherwise).The dependent variable,Y,is school type (Type = 1 if private and 0 otherwise).
The PHStat output is given below:
-True or False: Referring to Table 14-18,there is not enough evidence to conclude that the model is not a good-fitting model at a 0.05 level of significance.

(True/False)
4.8/5
(29)
TABLE 14-8
A financial analyst wanted to examine the relationship between salary (in $1,000)and 2 variables: age
(X1 = Age)and experience in the field (X2 = Exper).He took a sample of 20 employees and obtained the following Microsoft Excel output:
Also,the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Table 14-8,the analyst decided to construct a 95% confidence interval for β2.The confidence interval is from ________ to ________.

(Short Answer)
4.7/5
(32)
TABLE 14-4
A real estate builder wishes to determine how house size (House)is influenced by family income (Income)and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:
Also SSR (X1 ∣ X2)= 36400.6326 and SSR (X2 ∣ X1)= 3297.7917
-Referring to Table 14-4,when the builder used a simple linear regression model with house size (House)as the dependent variable and family size (Size)as the independent variable,he obtained an r2 value of 1.25%.What additional percentage of the total variation in house size has been explained by including income in the multiple regression?

(Multiple Choice)
4.9/5
(29)
Showing 121 - 140 of 337
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)