Exam 11: Analytic Geometry In Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find a set of symmetric equations for the line through the point and parallel to the specified vector or line. Point: (2,2,0)( - 2,2,0 ) Parallel to: v=37i47j3k\mathbf { v } = \frac { 3 } { 7 } \mathrm { i } - \frac { 4 } { 7 } \mathbf { j } - 3 \mathrm { k }

(Multiple Choice)
4.8/5
(42)

Use the vectors u and v to find (3u)× v. u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

(Multiple Choice)
4.9/5
(31)

Find the vector z,given u = (3,2,9)( - 3 , - 2,9 ) and v = (6,3,2)( 6 , - 3 , - 2 ) . z = 4u - 4v

(Multiple Choice)
4.8/5
(28)

Determine whether u and v are parallel,orthogonal,or neither. u = (3,1,16)( 3,1 , - 16 ) ,v = (5,1,1)( 5,1,1 )

(Multiple Choice)
4.9/5
(31)

Find the coordinates of the point. The point is located four units in front of the yz-plane,five units to the left of the xz-plane,and six units below the xy-plane.

(Multiple Choice)
4.8/5
(40)

Find a unit vector orthogonal to u and v. u=(2)i+(8)j+(1)kv=(3)i+(8)j+(1)k\mathbf { u } = ( - 2 ) \mathbf { i } + ( 8 ) \mathbf { j } + ( - 1 ) \mathbf { k } \quad \mathbf { v } = ( 3 ) \mathbf { i } + ( 8 ) \mathbf { j } + ( - 1 ) \mathbf { k }

(Multiple Choice)
4.9/5
(39)

Find the distance between the points. (0,0,0),(5,2,6)( 0,0,0 ) , ( 5,2,6 )

(Multiple Choice)
5.0/5
(32)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-3,3,-7) x=4-t y=1-3t z=3-5t

(Multiple Choice)
4.9/5
(38)

Find the triple scalar product. u=(2,3,3),v=(1,2,0),w=(0,0,4)\mathbf { u } = ( 2,3,3 ) , \mathbf { v } = ( 1,2,0 ) , \mathbf { w } = ( 0,0,4 )

(Multiple Choice)
4.7/5
(34)

Find the magnitude of the vector v. v = (8,6,8)( 8,6 , - 8 )

(Multiple Choice)
4.8/5
(32)

Find the triple scalar product u · (v × w)for the vectors u=(9)i+(1)j+(7)k,v=(7)i+(1)j+(6)k,w=(7)i+(4)j+(##k\mathbf { u } = ( - 9 ) \mathbf { i } + ( 1 ) \mathbf { j } + ( - 7 ) \mathbf { k } , \mathbf { v } = ( 7 ) \mathbf { i } + ( - 1 ) \mathbf { j } + ( - 6 ) \mathbf { k } , w = ( - 7 ) \mathbf { i } + ( 4 ) \mathbf { j } + ( \# \# k ) K

(Multiple Choice)
4.9/5
(34)

Find a set of symmetric equations for the line through the point and parallel to the specified vector or line. Point: (5,0,2) Parallel to: x=3+3t,y=52t,z=7+tx = 3 + 3 t , y = 5 - 2 t , z = - 7 + t

(Multiple Choice)
4.9/5
(38)

Find a set of parametric equations for the line through the point and parallel to the specified line. (4,8,8)( - 4,8,8 ) , parallel to x=7-5t y=-3-8t z=-2+3t

(Essay)
4.9/5
(41)

The vector v and its initial point are given.Find the terminal point. v=(9,1,1)v = ( 9 , - 1 , - 1 ) Initial point: (16,9,8)( 16 , - 9,8 )

(Multiple Choice)
4.7/5
(34)

Find the distance between the points. (1,0,5),(8,8,15)( 1,0 , - 5 ) , ( 8,8,15 )

(Multiple Choice)
4.8/5
(43)

Find the coordinates of the point. The point is located on the x-axis,four units in front of the yz-plane.

(Multiple Choice)
4.8/5
(38)

Find the distance between the points. (7,7,3),(1,4,7)( 7 , - 7,3 ) , ( - 1 , - 4,7 )

(Multiple Choice)
4.9/5
(31)

Use vectors to determine whether the points are collinear. (-9,-1,2), (-12,-3,-2), (-10,3,7)

(Multiple Choice)
4.9/5
(33)

Find the dot product of u and v. =(7,-1,14) =(8,-14,1)

(Multiple Choice)
4.9/5
(39)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line. Point: (0,0,8)( 0,0,8 ) Perpendicular to: x=1t,y=2+t,z=44tx = 1 - t , y = 2 + t , z = 4 - 4 t

(Multiple Choice)
4.7/5
(36)
Showing 21 - 40 of 256
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)