Exam 11: Analytic Geometry In Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The brakes on a bicycle are applied by using a downward force of p pounds on the pedal when the six-inch crank makes a angle with the horizontal.Vectors representing the position of the crank and the force are V=16(cos70jsin70k)\mathbf { V } = \frac { 1 } { 6 } \left( - \cos 70 ^ { \circ } \mathbf { j } - \sin 70 ^ { \circ } \mathbf { k } \right) and F=pk\mathbf { F } = - p \mathbf { k } respectively.The magnitude of the torque on the crank is given by V×F\| \mathbf { V } \times \mathbf { F } \| .Using the given information,write the torque T on the crank as a function of p.  The brakes on a bicycle are applied by using a downward force of p pounds on the pedal when the six-inch crank makes a angle with the horizontal.Vectors representing the position of the crank and the force are  \mathbf { V } = \frac { 1 } { 6 } \left( - \cos 70 ^ { \circ } \mathbf { j } - \sin 70 ^ { \circ } \mathbf { k } \right)  and  \mathbf { F } = - p \mathbf { k }  respectively.The magnitude of the torque on the crank is given by  \| \mathbf { V } \times \mathbf { F } \|  .Using the given information,write the torque T on the crank as a function of p.

(Multiple Choice)
5.0/5
(29)

Find a set of symmetric equations for the line through the point and parallel to the specified vector or line. Point: (7,0,2)( - 7,0,2 ) Parallel to: v=4i+5j3k\mathbf { v } = 4 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k }

(Multiple Choice)
4.7/5
(28)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line. Point: (7,8,2)( 7,8,2 ) Perpendicular to: n=4i+j5k\mathbf { n } = - 4 \mathbf { i } + \mathbf { j } - 5 \mathbf { k }

(Multiple Choice)
4.8/5
(37)

Find the dot product of u and v. =(6,6,-1) =(4,-7,-10)

(Multiple Choice)
4.8/5
(38)

The vector v and its initial point are given.Find the terminal point. v = (5,8,8)( - 5,8,8 ) Initial point: (-4,-8,-8)

(Multiple Choice)
4.7/5
(36)

Find the magnitude of v. v=(9,10,9)\mathbf { v } = ( 9,10,9 )

(Multiple Choice)
4.7/5
(40)

Both the magnitude and direction of the force on a crankshaft change as the crankshaft rotates.Vectors representing the position of the crank and the force are V=0.16(cos30jsin30k)\mathbf { V } = 0.16 \left( - \cos 30 ^ { \circ } \mathbf { j } - \sin 30 ^ { \circ } \mathbf { k } \right) and F=2000k\mathbf { F } = - 2000 \mathrm { k } respectively.The magnitude of the torque on the crank is given by V×F\| \mathbf { V } \times \mathbf { F } \| ,find the magnitude of the torque on the crank shaft using the position and data shown in the figure.  Both the magnitude and direction of the force on a crankshaft change as the crankshaft rotates.Vectors representing the position of the crank and the force are  \mathbf { V } = 0.16 \left( - \cos 30 ^ { \circ } \mathbf { j } - \sin 30 ^ { \circ } \mathbf { k } \right)  and  \mathbf { F } = - 2000 \mathrm { k }  respectively.The magnitude of the torque on the crank is given by  \| \mathbf { V } \times \mathbf { F } \|  ,find the magnitude of the torque on the crank shaft using the position and data shown in the figure.      \mathbf { a } = 2000 , \mathbf { b } = 0.16   a=2000,b=0.16\mathbf { a } = 2000 , \mathbf { b } = 0.16

(Multiple Choice)
5.0/5
(39)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-7,-8,-1) x=3+2t y=-3-2t z=2+4t

(Multiple Choice)
4.8/5
(33)

Use the vectors v to find v×v. v=4i+4jk\mathbf { v } = 4 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }

(Multiple Choice)
4.8/5
(35)

Find the magnitude of v. v=(1,3,6)\mathbf { v } = ( 1 , - 3,6 )

(Multiple Choice)
4.9/5
(38)

Use the vectors u and v to find (-2u)× v. u=3ij+4kv=2i+2jk\mathbf { u } = 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } \quad \mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }

(Multiple Choice)
4.8/5
(34)

Use the triple scalar product to find the volume of the parallelepiped having adjacent edges u,v,and w. =(1,1,2) =(2,2,2) =(2,0,2)  Use the triple scalar product to find the volume of the parallelepiped having adjacent edges u,v,and w.  \begin{array} { l }  \mathbf { u } = ( 1,1,2 ) \\ \mathbf { v } = ( 2,2,2 ) \\ \mathbf { w } = ( 2,0,2 ) \end{array}      \mathrm { a } = ( 1,1,2 ) , \mathrm { b } = ( 2,2,2 ) , \mathrm { c } = ( 2,0,2 )   a=(1,1,2),b=(2,2,2),c=(2,0,2)\mathrm { a } = ( 1,1,2 ) , \mathrm { b } = ( 2,2,2 ) , \mathrm { c } = ( 2,0,2 )

(Multiple Choice)
4.7/5
(39)

Find u × v and show that it is orthogonal to both u and v. u=(6,1,7)v=(5,5,1)\mathbf { u } = ( 6 , - 1,7 ) \quad \mathbf { v } = ( 5,5 , - 1 )

(Multiple Choice)
4.8/5
(37)

Find the angle between the two planes in degrees.Round to a tenth of a degree. 3x-4y+1z=-6 2x+1y-3z=0

(Multiple Choice)
4.9/5
(38)

Find the area of the parallelogram that has the vectors as adjacent sides. u=(5)i+(1)j+(3)kv=(5)i+(5)j+(2)k\mathbf { u } = ( 5 ) \mathbf { i } + ( 1 ) \mathbf { j } + ( - 3 ) \mathbf { k } \quad \mathbf { v } = ( - 5 ) \mathbf { i } + ( 5 ) \mathbf { j } + ( - 2 ) \boldsymbol { k }

(Multiple Choice)
5.0/5
(37)

Find the area of the parallelogram that has the vectors as adjacent sides. =10+6+10 =5-10+15

(Multiple Choice)
5.0/5
(28)

Find the lengths of the sides of the triangle with the indicated vertices. (0,0,0),(3,3,1),(5,1,2)( 0,0,0 ) , ( 3,3,1 ) , ( 5 , - 1,2 )

(Multiple Choice)
4.8/5
(37)

Find the standard form of the equation of the sphere with the given characteristics. Center: (-4,1,-7);radius 9

(Multiple Choice)
4.8/5
(34)

Find the dot product of u and v. =5-10 =10-6-4

(Multiple Choice)
4.9/5
(33)

Find the standard form of the equation of the sphere with the given characteristics. Endpoints of a diameter: (-1,6,1), (7,-4,-9)

(Multiple Choice)
4.8/5
(35)
Showing 161 - 180 of 256
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)