Exam 15: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

What point on the surface z is closest to the origin z=x2+y2z = x ^ { 2 } + y - 2 Hint : Minimize the square of the distance from (x,y,z)( x , y , z ) to the origin. NOTE: Please enter your answer(s) in the form (x,y,z)( x , y , z ) . If there is more than one answer, separate them with commas.

(Essay)
4.8/5
(36)

Compute the integral. 09x2x2x dy dx\int _ { 0 } ^ { 9 } \int _ { - x ^ { 2 } } ^ { x ^ { 2 } } x \mathrm {~d} y \mathrm {~d} x

(Multiple Choice)
4.7/5
(37)

Let H=fxx(a,b)fyy(a,b)f2xy(a,b)H = f _ { x x } ( a , b ) f _ { y y } ( a , b ) - f ^ { 2 } x y ( a , b ) What condition on H guarantees that f has a relative extremum at the point (a,b)( a , b )

(Short Answer)
4.9/5
(42)

Use Lagrange Multipliers to solve the problem. Find the maximum value of f(x,y)=3xyf ( x , y ) = 3 x y subject to x2+y2=8x ^ { 2 } + y ^ { 2 } = 8 .

(Multiple Choice)
5.0/5
(42)

Write the integral with the order of integration reversed (changing the limits of integration as necessary). 1101+yf(x,y)dx dy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 + y } } f ( x , y ) \mathrm { d } x \mathrm {~d} y

(Multiple Choice)
4.9/5
(37)

Locate the local maximum of the function. f(x,y)=x2y8x24y2f ( x , y ) = x ^ { 2 } y - 8 x ^ { 2 } - 4 y ^ { 2 }

(Multiple Choice)
4.8/5
(32)

Solve the given problem by using substitution. Find the maximum value of f(x,y,z)=8x2y2z2f ( x , y , z ) = 8 - x ^ { 2 } - y ^ { 2 } - z ^ { 2 } subject to z=3yz = 3 y .

(Multiple Choice)
5.0/5
(35)

Use the given tabular representation of the function ff to compute f(2,4)f(4,2)f ( 2,4 ) - f ( 4,2 ) . -5 197 185 -5 -9 191 100 -4 -20 201 225 -19 -19 216 235 -18

(Multiple Choice)
4.9/5
(31)

Use Lagrange Multipliers to solve the given problem. Find the maximum value of f(x,y)=xyf ( x , y ) = x y subject to 2x+y=602 x + y = 60 .

(Multiple Choice)
4.8/5
(31)

For the function p(x,y)=x0.2y+0.44xyp ( x , y ) = x - 0.2 y + 0.44 x y Find p(40,20)p ( 40,20 ) .

(Multiple Choice)
4.8/5
(29)

Locate the saddle point of the function. f(x,y)=x26x+yeyf ( x , y ) = x ^ { 2 } - 6 x + y - e ^ { y }

(Multiple Choice)
4.8/5
(30)

If positive electric charges of Q and q coulombs are situated at positions (a,b,c)( a , b , c ) and (x,y,z)( x , y , z ) , respectively, then the force of repulsion they experience is given by F=KQq(xa)2+(yb)2+(zc)2F = K \frac { Q q } { ( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } + ( z - c ) ^ { 2 } } Where K9×109K \approx 9 \times 10 ^ { 9 } , F is given in newtons, and all positions are measured in meters. Assume that a charge of 4 coulombs is situated at the origin and that a second charge of 14 coulombs is situated (1,4,3)( 1,4,3 ) and moving in the y direction at 1.4 meters per second. How fast is the electrostatic force it experiences decreasing NOTE: Please enter your answer without the units. Round the answer to the nearest trillion.

(Essay)
4.9/5
(37)

Your company manufactures two models of stereo speakers, the Ultra Mini and the Big Stack. Demand for each depends partly on the price of the other. If one is expensive then more people will buy the other. If p1 is the price per pair of the Ultra Mini and p2 is the price of the Big Stack, demand for the Ultra Mini is given by q1(p1,p2)=50,000100p1+10p2q _ { 1 } \left( p _ { 1 } , p _ { 2 } \right) = 50,000 - 100 p _ { 1 } + 10 p _ { 2 } Where q1 represents the number of pairs of Ultra Minis that will be sold in a year. The demand for the Big Stack is given by q2(p1,p2)=150,000+10p1100p2q _ { 2 } \left( p _ { 1 } , p _ { 2 } \right) = 150,000 + 10 p _ { 1 } - 100 p _ { 2 } Find the prices for the Ultra Mini and the Big Stack that will maximize your total revenue. Round your answer to the nearest dollar.

(Multiple Choice)
4.7/5
(36)

Solve the given problem by using substitution. Minimize S=xy+25xz+5yzS = x y + 25 x z + 5 y z subject to xyz=1x y z = 1 with x>0x > 0 , y>0y > 0 , z>0z > 0 .

(Multiple Choice)
4.8/5
(34)

Evaluate f(a,2)f ( a , 2 ) for f(x,y)=x2yxy+5f ( x , y ) = x ^ { 2 } - y - x y + 5

(Multiple Choice)
4.9/5
(39)

Compute the integral. 0104x25x(x+y)12 dy dx\int _ { 0 } ^ { 10 } \int _ { 4 - x } ^ { 25 - x } ( x + y ) ^ { \frac { 1 } { 2 } } \mathrm {~d} y \mathrm {~d} x

(Multiple Choice)
4.8/5
(39)

How many critical points does the function have f(x,y)=2xeyf ( x , y ) = 2 x e ^ { y }

(Multiple Choice)
4.9/5
(28)

Find Rf(x,y)dx dy\iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y , where f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)  Find  \iint _ { R } f ( x , y ) \mathrm { d } x \mathrm {~d} y  , where  f ( x , y ) = x y ^ { 2 }  and R is the indicated domain. (Remember that you often have a choice as to the order of integration.)        f ( y ) = \sqrt { 9 - y ^ { 2 } }    f(y)=9y2f ( y ) = \sqrt { 9 - y ^ { 2 } }

(Multiple Choice)
4.7/5
(31)

Compute the integral. 0408ex+y dx dy\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 8 } e ^ { x + y } \mathrm {~d} x \mathrm {~d} y

(Multiple Choice)
4.8/5
(38)

Locate the local maximum of the function. f(x,y)=e(x6+y2)f ( x , y ) = e ^ { - \left( x ^ { 6 } + y ^ { 2 } \right) }

(Multiple Choice)
4.7/5
(39)
Showing 101 - 120 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)