Exam 15: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Calculate fx(8,7)\left. \frac { \partial f } { \partial x } \right| _ { ( 8,7 ) } , and fy(8,7)\left. \frac { \partial f } { \partial y } \right| _ { ( 8,7 ) } when defined. ​ f(x,y)=1,12017x+19y+3xyf ( x , y ) = 1,120 - 17 x + 19 y + 3 x y ​ Enter your answers, separated by a comma.

(Short Answer)
4.9/5
(40)

Graph the function. f(x,y)=3x5y+3f ( x , y ) = 3 x - 5 y + 3

(Multiple Choice)
4.8/5
(32)

Graph the plane. z=5z = 5

(Multiple Choice)
4.9/5
(27)

Calculate 2fy2\frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } , 2fxy\frac { \partial ^ { 2 } f } { \partial x y } and evaluate each at (8,8)( 8,8 ) . ​ f(x,y)=1,07020x+11y+9xyf ( x , y ) = 1,070 - 20 x + 11 y + 9 x y ​ Enter your answers, separated by a comma.

(Short Answer)
4.9/5
(23)

Your weekly cost (in dollars) to manufacture x cars and y trucks is C(x,y)=270,000+6,000x+5,000yC ( x , y ) = 270,000 + 6,000 x + 5,000 y What is the marginal cost of a car Please enter your answer as a number without the units.

(Short Answer)
4.9/5
(28)

Classify each labeled point on the graph. ​ Classify each labeled point on the graph. ​   ​ Choose the correct letter for each question. ​ -none ​ Choose the correct letter for each question. ​ -none

(Multiple Choice)
4.7/5
(23)

If positive electric charges of Q and q coulombs are situated at positions (a,b,c)( a , b , c ) and (x,y,z)( x , y , z ) , respectively, then the force of repulsion they experience is given by F=KQq(xa)2+(yb)2+(zc)2F = K \frac { Q q } { ( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } + ( z - c ) ^ { 2 } } Where K9×109K \approx 9 \times 10 ^ { 9 } , F is given in newtons, and all positions are measured in meters. Assume that a charge of 6 coulombs is situated at the origin and that a second charge of 12 coulombs is situated (6,6,4)( 6,6,4 ) and moving in the y direction at 1.5 meters per second. How fast is the electrostatic force it experiences decreasing Round your answer to the nearest trillion.

(Multiple Choice)
4.9/5
(43)

​Calculate 2fx2\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } , 2fyx\frac { \partial ^ { 2 } f } { \partial y x } when defined. ​ f(x,y)=4x0.8y0.3f ( x , y ) = 4 x ^ { 0.8 } y ^ { 0.3 } ​ Enter your answers, separated by a comma.

(Essay)
4.9/5
(38)

For the function f(x,y)=5x2+5y2f ( x , y ) = 5 x ^ { 2 } + 5 y ^ { 2 } Show cross section at z=1z = 1 .

(Multiple Choice)
4.8/5
(34)

Evaluate g(0,0,1)g ( 0,0,1 ) for g(x,y,z)=ln(x+y+z)g ( x , y , z ) = \ln ( x + y + z )

(Multiple Choice)
4.8/5
(35)

Evaluate g(2,1,1)g ( - 2,1 , - 1 ) for ​ g(x,y,z)=6xyzx2+y2+z2g ( x , y , z ) = \frac { 6 x y z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }

(Short Answer)
4.7/5
(29)

Calculate fx\frac { \partial f } { \partial x } , and fy\frac { \partial f } { \partial y } when defined. f(x,y)=9x0.7y0.9f ( x , y ) = 9 x ^ { 0.7 } y ^ { 0.9 }

(Multiple Choice)
4.8/5
(32)

Calculate 2fy2\frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } , 2fxy\frac { \partial ^ { 2 } f } { \partial x y } and evaluate each at (5,7)( 5,7 ) . f(x,y)=95016x+14y+6xyf ( x , y ) = 950 - 16 x + 14 y + 6 x y

(Multiple Choice)
4.7/5
(29)

The temperature at the point (x,y)( x , y ) on the square with vertices (0, 0), (0, 2), (2, 0) and (2, 2) is given by ​ T(x,y)=2x2+4y2T ( x , y ) = 2 x ^ { 2 } + 4 y ^ { 2 } ​ Find the hottest and coldest points on the square. ​ NOTE: Please enter your answers in the form (x,y)( x , y ) , separated by commas.

(Short Answer)
4.8/5
(37)

Compute the integral. 0102yx dx dy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 2 - y } x \mathrm {~d} x \mathrm {~d} y

(Multiple Choice)
4.7/5
(28)

Let f(x,y,z)=48.43.1x+7.7y+8.5zf ( x , y , z ) = 48.4 - 3.1 x + 7.7 y + 8.5 z . By what value is ff increased if yy is increased by 1

(Multiple Choice)
4.8/5
(38)

Your weekly cost (in dollars) to manufacture x cars and y trucks is given by C(x,y)=300,000+6,500x+4,500yC ( x , y ) = 300,000 + 6,500 x + 4,500 y Find Cx\frac { \partial C } { \partial x } , and Cy\frac { \partial C } { \partial y } .

(Multiple Choice)
4.8/5
(32)

Compute the integral. 0305(yexxy)dx dy\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 5 } \left( y e ^ { x } - x - y \right) \mathrm { d } x \mathrm {~d} y

(Multiple Choice)
4.8/5
(36)

Find x and y values of the relative extrema of the function. f(x,y)=x4+8xy2+2y4f ( x , y ) = x ^ { 4 } + 8 x y ^ { 2 } + 2 y ^ { 4 }

(Multiple Choice)
4.9/5
(41)

Calculate fx\frac { \partial f } { \partial x } , and fy(8,2)\left. \frac { \partial f } { \partial y } \right| _ { ( 8,2 ) } when defined. f(x,y)=110016x+11yf ( x , y ) = 1100 - 16 x + 11 y

(Multiple Choice)
4.7/5
(30)
Showing 61 - 80 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)